Home
Class 12
MATHS
If f(x)=(2010x+165)/(165x-2010), x gt 0 ...

If `f(x)=(2010x+165)/(165x-2010), x gt 0 " and " x ne (2010)/(165)`, the least value of `f(f(x))+f(f(4/x))` is ………. .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the least value of the expression \( f(f(x)) + f(f(4/x)) \) where \( f(x) = \frac{2010x + 165}{165x - 2010} \). ### Step 1: Find \( f(f(x)) \) We start by substituting \( f(x) \) into itself. \[ f(f(x)) = f\left(\frac{2010x + 165}{165x - 2010}\right) \] Substituting \( f(x) \) into the function: \[ f(f(x)) = \frac{2010\left(\frac{2010x + 165}{165x - 2010}\right) + 165}{165\left(\frac{2010x + 165}{165x - 2010}\right) - 2010} \] ### Step 2: Simplify \( f(f(x)) \) Now we simplify the numerator and denominator separately. **Numerator:** \[ 2010\left(\frac{2010x + 165}{165x - 2010}\right) + 165 = \frac{2010(2010x + 165) + 165(165x - 2010)}{165x - 2010} \] Calculating the numerator: \[ 2010^2 x + 2010 \cdot 165 + 165 \cdot 165 x - 165 \cdot 2010 \] \[ = (2010^2 + 165^2)x + (2010 \cdot 165 - 165 \cdot 2010) = (2010^2 + 165^2)x \] **Denominator:** \[ 165\left(\frac{2010x + 165}{165x - 2010}\right) - 2010 = \frac{165(2010x + 165) - 2010(165x - 2010)}{165x - 2010} \] Calculating the denominator: \[ 165 \cdot 2010 x + 165^2 - 2010 \cdot 165 x + 2010^2 = (165 \cdot 2010 - 2010 \cdot 165)x + 165^2 + 2010^2 = 165^2 + 2010^2 \] Thus, we have: \[ f(f(x)) = \frac{(2010^2 + 165^2)x}{165^2 + 2010^2} \] ### Step 3: Find \( f(f(4/x)) \) Now we need to find \( f(f(4/x)) \): \[ f(f(4/x)) = f\left(\frac{2010 \cdot \frac{4}{x} + 165}{165 \cdot \frac{4}{x} - 2010}\right) \] Following the same process as above, we can find: \[ f(f(4/x)) = \frac{(2010^2 + 165^2) \cdot \frac{4}{x}}{165^2 + 2010^2} \] ### Step 4: Combine \( f(f(x)) \) and \( f(f(4/x)) \) Now we add \( f(f(x)) + f(f(4/x)) \): \[ f(f(x)) + f(f(4/x)) = \frac{(2010^2 + 165^2)x}{165^2 + 2010^2} + \frac{(2010^2 + 165^2) \cdot \frac{4}{x}}{165^2 + 2010^2} \] Factoring out the common term: \[ = \frac{2010^2 + 165^2}{165^2 + 2010^2} \left( x + \frac{4}{x} \right) \] ### Step 5: Find the minimum value of \( x + \frac{4}{x} \) To find the minimum value of \( x + \frac{4}{x} \), we can use the AM-GM inequality: \[ x + \frac{4}{x} \geq 2\sqrt{x \cdot \frac{4}{x}} = 4 \] ### Conclusion Thus, the least value of \( f(f(x)) + f(f(4/x)) \) is: \[ \frac{2010^2 + 165^2}{165^2 + 2010^2} \cdot 4 \] Since the fraction simplifies to 1, the least value is: \[ \boxed{4} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|13 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 7: Subjective Type Questions|1 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 5: Matching Type Questions|2 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=3x+|x| , then the value of f(3x)+f(-x)-f(x) is:

If f'(x)=(x-a)^(2010)(x-b)^(2009) and agtb , then

If f(x) = (1)/(1 -x) x ne 1 and g(x) = (x-1)/(x) , x ne0 , then the value of g[f(x)] is :

If f(x)=(1-x)/(1+x), x ne 0, -1 and alpha=f(f(x))+f(f((1)/(x))) , then

If f(x)=x-(1)/(x), x ne 0 then f(x^(2)) equals.

If int(sec^(2)x-2010)/(sin^(2010)x)dx=(P(x))/(sin^(2010) x)+C , then value of P((pi)/(3)) is

If a function satisfies the relation f(x) f''(x)-f(x)f'(x)=(f'(x))^(2) AA x in R and f(0)=f'(0)=1, then The value of lim_(x to -oo) f(x) is

Let f be a differentiable function satisfying f(xy)=f(x).f(y).AA x gt 0, y gt 0 and f(1+x)=1+x{1+g(x)} , where lim_(x to 0)g(x)=0 then int (f(x))/(f'(x))dx is equal to

Suppose that f(x) is a function of the form f(x)=(ax^(8)+bx^(6)+cx^(4)+dx^(2)+15x+1)/(x), (x ne 0)." If " f(5)=2 , then the value of f(-5) is _________.

If f(x) is a continuous function such that f(x) gt 0 for all x gt 0 and (f(x))^(2020)=1+int_(0)^(x) f(t) dt , then the value of {f(2020)}^(2019) is equal to

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Integer Answer Type Questions)
  1. If f:R rarr R satisfying f(x-f(y))=f(f(y))+xf(y)+f(x)-1, for all x,y i...

    Text Solution

    |

  2. Let f:N rarr R be such that f(1)=1 and f(1)+2f(2)+3f(3)+…+nf(n)=n(n+1)...

    Text Solution

    |

  3. If f(x)=(2010x+165)/(165x-2010), x gt 0 " and " x ne (2010)/(165), the...

    Text Solution

    |

  4. If alpha,beta,gamma in R, alpha+beta+gamma=4 " and " alpha^(2)+beta^(2...

    Text Solution

    |

  5. The number or linear functions f satisfying f(x+f(x))=x+f(x) AA x in R...

    Text Solution

    |

  6. If A={1,2,3}, B={1,3,5,7,9}, the ratio of number of one-one functions ...

    Text Solution

    |

  7. If n(A)=4, n(B)=5 and number of functions from A to B such that range ...

    Text Solution

    |

  8. If a and b are constants, such that f(x)=asinx+bxcosx+2x^(2) and f(2...

    Text Solution

    |

  9. If the functions f(x)=x^(3)+e^(x//2) " and " g(x)=f^(-1)(x), the value...

    Text Solution

    |

  10. If f(x)=x^(3)-12x+p,p in {1,2,3,…,15} and for each 'p', the number of ...

    Text Solution

    |

  11. Let f(x) denotes the number of zeroes in f'(x). If f(m)-f(n)=3, the va...

    Text Solution

    |

  12. If x^(2)+y^(2)=4 then find the maximum value of (x^(3)+y^(3))/(x+y)

    Text Solution

    |

  13. Let f(n) denotes the square of the sum of the digits of natural numbe...

    Text Solution

    |

  14. If [sinx]+[x/(2pi)]+[(2x)/(5pi)]=(9x)/(10pi), where [*] denotes the gr...

    Text Solution

    |

  15. The number of integral solutions of 1/x+1/y=1/6 " with " x le y " is "...

    Text Solution

    |

  16. If f(x) is a polynominal of degree 4 with leading coefficient '1' sati...

    Text Solution

    |

  17. If a+b = 3- cos 4 theta and a-b =4 sin 2theta, then ab is always less ...

    Text Solution

    |

  18. Let 'n' be the number of elements in the domain set of the function f(...

    Text Solution

    |

  19. Let f(x) be a function such that , f(x-1)+f(c+1)=sqrt(3)f(x), forall x...

    Text Solution

    |

  20. If 2f(x)=f(x y)+f(x/y) for all positive values of x and y,f(1)=0 and f...

    Text Solution

    |