Home
Class 12
MATHS
Let f(n) denotes the square of the sum ...

Let `f(n)` denotes the square of the sum of the digits of natural number n, where `f^2(n)` denotes `f(f(n)).f^3(n)` denote `f(f(f(n)))` and so on.the value of `(f^2011(2011)-f^2010 (2011))/(f^2013 (2011)-f^2012 (2011))` is....

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to calculate the values of \( f^{2011}(2011) \), \( f^{2010}(2011) \), \( f^{2013}(2011) \), and \( f^{2012}(2011) \) using the function \( f(n) \), which is defined as the square of the sum of the digits of \( n \). ### Step-by-step Solution: 1. **Calculate \( f(2011) \)**: - The digits of 2011 are 2, 0, 1, and 1. - Sum of the digits: \( 2 + 0 + 1 + 1 = 4 \). - Therefore, \( f(2011) = 4^2 = 16 \). 2. **Calculate \( f^{2}(2011) = f(f(2011)) = f(16) \)**: - The digits of 16 are 1 and 6. - Sum of the digits: \( 1 + 6 = 7 \). - Therefore, \( f(16) = 7^2 = 49 \). 3. **Calculate \( f^{3}(2011) = f(f^{2}(2011)) = f(49) \)**: - The digits of 49 are 4 and 9. - Sum of the digits: \( 4 + 9 = 13 \). - Therefore, \( f(49) = 13^2 = 169 \). 4. **Calculate \( f^{4}(2011) = f(f^{3}(2011)) = f(169) \)**: - The digits of 169 are 1, 6, and 9. - Sum of the digits: \( 1 + 6 + 9 = 16 \). - Therefore, \( f(169) = 16^2 = 256 \). 5. **Calculate \( f^{5}(2011) = f(f^{4}(2011)) = f(256) \)**: - The digits of 256 are 2, 5, and 6. - Sum of the digits: \( 2 + 5 + 6 = 13 \). - Therefore, \( f(256) = 13^2 = 169 \). 6. **Calculate \( f^{6}(2011) = f(f^{5}(2011)) = f(169) \)**: - From the previous calculation, we know \( f(169) = 256 \). 7. **Identify the pattern**: - We see that: - \( f^{1}(2011) = 16 \) - \( f^{2}(2011) = 49 \) - \( f^{3}(2011) = 169 \) - \( f^{4}(2011) = 256 \) - \( f^{5}(2011) = 169 \) - \( f^{6}(2011) = 256 \) - The values alternate between 169 and 256 for odd and even powers greater than 3. 8. **Calculate the required expression**: - We need to find: \[ \frac{f^{2011}(2011) - f^{2010}(2011)}{f^{2013}(2011) - f^{2012}(2011)} \] - Since \( 2011 \) is odd, \( f^{2011}(2011) = 169 \) and \( f^{2010}(2011) = 256 \). - Since \( 2013 \) is odd, \( f^{2013}(2011) = 169 \) and \( f^{2012}(2011) = 256 \). - Therefore, the expression becomes: \[ \frac{169 - 256}{169 - 256} = \frac{-87}{-87} = 1 \] ### Final Answer: The value of \( \frac{f^{2011}(2011) - f^{2010}(2011)}{f^{2013}(2011) - f^{2012}(2011)} \) is \( 1 \).
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|13 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 7: Subjective Type Questions|1 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 5: Matching Type Questions|2 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

Let f be defined on the natural numbers as follow: f(1)=1 and for n gt 1, f(n)=f[f(n-1)]+f[n-f(n-1)] , the value of 1/(30)sum_(r=1)^(20)f(r) is

Let f(x)=(x^3+2)^(30) If f^n (x) is a polynomial of degree 20 where f^n(x) denotes the n^(th) derivativeof f(x) w.r.t x then then value of n is

Let f\ be a relation on the set NN of natural numbers defined by f={(n ,3n): n in NN} is f a function from NN\ to\ NN . If so, find the range of f .

f(1)=1, n ge 1 f(n+1)=2f(n)+1 then f(n)=

Let A = {0, 1} and the set of all natural numbers.Then the mapping f: N rarr A defined by f(2n-1) = 0, f(2n) = 1, AA n in N, is

If f(x)=(1+x)^2, then the value of f(x0)+f^(prime)(0) +(f^(0))/(2!)+(f^(0))/(3!)+(f^n(0))/(n !)dot

If f(x)=(1+x)^2, then the value of f(x0)+f^(prime)(0) +(f^(0))/(2!)+(f^(0))/(3!)+(f^n(0))/(n !)dot

if f(x) = x^n then the value of f(1) - (f'(1))/(1!) + (f''(1))/(2!) + ---+((-1)^n f''^--n times (1))/(n!)

Let f(x) denotes the number of zeroes in f'(x). If f(m)-f(n)=3, the value of ((m-n)_(max)-(m-n)_(min))/(2) is ........... .

If f(x)=x^(n),"n" epsilon N , then the value of f(1)-(f^(')(1))/(1!)+(f^(")(1))/(2!)-(f^''')(1)/(3!)+…+(-1)^(n)(f^(n)(1))/(n!) is

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Integer Answer Type Questions)
  1. Let f(x) denotes the number of zeroes in f'(x). If f(m)-f(n)=3, the va...

    Text Solution

    |

  2. If x^(2)+y^(2)=4 then find the maximum value of (x^(3)+y^(3))/(x+y)

    Text Solution

    |

  3. Let f(n) denotes the square of the sum of the digits of natural numbe...

    Text Solution

    |

  4. If [sinx]+[x/(2pi)]+[(2x)/(5pi)]=(9x)/(10pi), where [*] denotes the gr...

    Text Solution

    |

  5. The number of integral solutions of 1/x+1/y=1/6 " with " x le y " is "...

    Text Solution

    |

  6. If f(x) is a polynominal of degree 4 with leading coefficient '1' sati...

    Text Solution

    |

  7. If a+b = 3- cos 4 theta and a-b =4 sin 2theta, then ab is always less ...

    Text Solution

    |

  8. Let 'n' be the number of elements in the domain set of the function f(...

    Text Solution

    |

  9. Let f(x) be a function such that , f(x-1)+f(c+1)=sqrt(3)f(x), forall x...

    Text Solution

    |

  10. If 2f(x)=f(x y)+f(x/y) for all positive values of x and y,f(1)=0 and f...

    Text Solution

    |

  11. Let f be a function from the set of positive integers to the set of re...

    Text Solution

    |

  12. If f(x)=(x^(4)+x^(2)+1)/(x^(2)-x+1), the value of f(omega^(n)) (where ...

    Text Solution

    |

  13. If f^2(x)*f((1-x)/(1+x))=x^3, [x!=-1,1 and f(x)!=0], then find |[f(-2)...

    Text Solution

    |

  14. An odd function is symmetric about the vertical line x=a ,(a >0),a n d...

    Text Solution

    |

  15. L e t(e^x-e^(-x))/(e^x+e^(-x))=lnsqrt((1+x)/(1-x)),then find x.

    Text Solution

    |

  16. If x is real, the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is (...

    Text Solution

    |

  17. If f(x) satisfies the relation f(x)+f(x+4)=f(x+2)+f(x+6) for allx , th...

    Text Solution

    |

  18. 83. A non-zero function f (x) is symmetrical about the line y=x then t...

    Text Solution

    |

  19. Let f:R rarr R and f(x)=(3x^(2)+mx+n)/(x^(2)+1). If the range of this ...

    Text Solution

    |

  20. Let f(x)be a monotic ploynomial of degree (2m-1) where m in N Then the...

    Text Solution

    |