Home
Class 12
MATHS
If [sinx]+[x/(2pi)]+[(2x)/(5pi)]=(9x)/(1...

If `[sinx]+[x/(2pi)]+[(2x)/(5pi)]=(9x)/(10pi)`, where `[*]` denotes the greatest integer function, the number of solutions in the interval (30,40) is ………… .

Text Solution

AI Generated Solution

The correct Answer is:
To solve the equation \([ \sin x ] + [ \frac{x}{2\pi} ] + [ \frac{2x}{5\pi} ] = \frac{9x}{10\pi}\) where \([*]\) denotes the greatest integer function, we will analyze each term and find the number of solutions in the interval \( (30, 40) \). ### Step 1: Analyze \([ \sin x ]\) The sine function oscillates between -1 and 1. Therefore, \([ \sin x ]\) can take values of -1 or 0: - \([ \sin x ] = 0\) when \( \sin x \) is in the range \( [0, 1) \). - \([ \sin x ] = -1\) when \( \sin x \) is in the range \( [-1, 0) \). ### Step 2: Analyze \([ \frac{x}{2\pi} ]\) For \( x \) in the interval \( (30, 40) \): - \( \frac{30}{2\pi} \approx 4.77 \) and \( \frac{40}{2\pi} \approx 6.37 \). - Therefore, \([ \frac{x}{2\pi} ]\) can take values 4, 5, or 6. ### Step 3: Analyze \([ \frac{2x}{5\pi} ]\) For \( x \) in the interval \( (30, 40) \): - \( \frac{2 \times 30}{5\pi} \approx 3.82 \) and \( \frac{2 \times 40}{5\pi} \approx 5.09 \). - Therefore, \([ \frac{2x}{5\pi} ]\) can take values 3, 4, or 5. ### Step 4: Set up the equation We can rewrite the equation as: \[ [ \sin x ] + [ \frac{x}{2\pi} ] + [ \frac{2x}{5\pi} ] = \frac{9x}{10\pi} \] ### Step 5: Consider cases for \([ \sin x ]\) #### Case 1: \([ \sin x ] = 0\) The equation becomes: \[ 0 + [ \frac{x}{2\pi} ] + [ \frac{2x}{5\pi} ] = \frac{9x}{10\pi} \] This simplifies to: \[ [ \frac{x}{2\pi} ] + [ \frac{2x}{5\pi} ] = \frac{9x}{10\pi} \] Substituting possible values for \([ \frac{x}{2\pi} ]\) and \([ \frac{2x}{5\pi} ]\), we find that this does not yield any integer solutions. #### Case 2: \([ \sin x ] = -1\) The equation becomes: \[ -1 + [ \frac{x}{2\pi} ] + [ \frac{2x}{5\pi} ] = \frac{9x}{10\pi} \] This simplifies to: \[ [ \frac{x}{2\pi} ] + [ \frac{2x}{5\pi} ] = \frac{9x}{10\pi} + 1 \] Again, substituting possible values for \([ \frac{x}{2\pi} ]\) and \([ \frac{2x}{5\pi} ]\) shows that this does not yield any integer solutions either. ### Conclusion After analyzing both cases, we find that there are no integer solutions for the equation in the interval \( (30, 40) \). ### Final Answer The number of solutions in the interval \( (30, 40) \) is **0**.
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|13 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 7: Subjective Type Questions|1 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 5: Matching Type Questions|2 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

if f(x) = tan(pi[(2x-3pi)^3])/(1+[2x-3pi]^2) ([.] denotes the greatest integer function), then

If [sin x]+[sqrt(2) cos x]=-3 , x in [0,2pi] , (where ,[.] denotes th greatest integer function ), then

Let f(x) = (sin (pi [ x + pi]))/(1+[x]^(2)) where [] denotes the greatest integer function then f(x) is

Let f(x) = (sin (pi [ x - pi]))/(1+[x^2]) where [] denotes the greatest integer function then f(x) is

if f(x) = cos pi (|x|+[x]), where [.] denotes the greatest integer , function then which is not true ?

Evaluate: int_0^(2pi)[sinx]dx ,where [dot] denotes the greatest integer function.

If f(x) = x+|x|+ cos ([ pi^(2) ]x) and g(x) =sin x, where [.] denotes the greatest integer function, then

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

If f(x)=(2x(sinx+tanx))/(2[(x+2pi)/(pi)]-3) then it is (where [.] denotes the greatest integer function)

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Integer Answer Type Questions)
  1. Let f(x) denotes the number of zeroes in f'(x). If f(m)-f(n)=3, the va...

    Text Solution

    |

  2. If x^(2)+y^(2)=4 then find the maximum value of (x^(3)+y^(3))/(x+y)

    Text Solution

    |

  3. Let f(n) denotes the square of the sum of the digits of natural numbe...

    Text Solution

    |

  4. If [sinx]+[x/(2pi)]+[(2x)/(5pi)]=(9x)/(10pi), where [*] denotes the gr...

    Text Solution

    |

  5. The number of integral solutions of 1/x+1/y=1/6 " with " x le y " is "...

    Text Solution

    |

  6. If f(x) is a polynominal of degree 4 with leading coefficient '1' sati...

    Text Solution

    |

  7. If a+b = 3- cos 4 theta and a-b =4 sin 2theta, then ab is always less ...

    Text Solution

    |

  8. Let 'n' be the number of elements in the domain set of the function f(...

    Text Solution

    |

  9. Let f(x) be a function such that , f(x-1)+f(c+1)=sqrt(3)f(x), forall x...

    Text Solution

    |

  10. If 2f(x)=f(x y)+f(x/y) for all positive values of x and y,f(1)=0 and f...

    Text Solution

    |

  11. Let f be a function from the set of positive integers to the set of re...

    Text Solution

    |

  12. If f(x)=(x^(4)+x^(2)+1)/(x^(2)-x+1), the value of f(omega^(n)) (where ...

    Text Solution

    |

  13. If f^2(x)*f((1-x)/(1+x))=x^3, [x!=-1,1 and f(x)!=0], then find |[f(-2)...

    Text Solution

    |

  14. An odd function is symmetric about the vertical line x=a ,(a >0),a n d...

    Text Solution

    |

  15. L e t(e^x-e^(-x))/(e^x+e^(-x))=lnsqrt((1+x)/(1-x)),then find x.

    Text Solution

    |

  16. If x is real, the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is (...

    Text Solution

    |

  17. If f(x) satisfies the relation f(x)+f(x+4)=f(x+2)+f(x+6) for allx , th...

    Text Solution

    |

  18. 83. A non-zero function f (x) is symmetrical about the line y=x then t...

    Text Solution

    |

  19. Let f:R rarr R and f(x)=(3x^(2)+mx+n)/(x^(2)+1). If the range of this ...

    Text Solution

    |

  20. Let f(x)be a monotic ploynomial of degree (2m-1) where m in N Then the...

    Text Solution

    |