Home
Class 12
MATHS
If f^2(x)*f((1-x)/(1+x))=x^3, [x!=-1,1 a...

If `f^2(x)*f((1-x)/(1+x))=x^3, [x!=-1,1 and f(x)!=0],` then find `|[f(-2)]|` (where [] is the greatest integer function).

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem step by step, we will follow the reasoning outlined in the video transcript. ### Step 1: Understand the given equation We start with the equation: \[ f^2(x) \cdot f\left(\frac{1-x}{1+x}\right) = x^3 \] where \( x \neq -1, 1 \) and \( f(x) \neq 0 \). ### Step 2: Substitute \( x \) with \( \frac{1-x}{1+x} \) Next, we replace \( x \) in the original equation with \( \frac{1-x}{1+x} \): \[ f^2\left(\frac{1-x}{1+x}\right) \cdot f\left(\frac{1 - \frac{1-x}{1+x}}{1 + \frac{1-x}{1+x}}\right) = \left(\frac{1-x}{1+x}\right)^3 \] ### Step 3: Simplify the substitution Now we simplify the second term: \[ \frac{1 - \frac{1-x}{1+x}}{1 + \frac{1-x}{1+x}} = \frac{\frac{(1+x) - (1-x)}{1+x}}{\frac{(1+x) + (1-x)}{1+x}} = \frac{\frac{2x}{1+x}}{\frac{2}{1+x}} = x \] Thus, the equation becomes: \[ f^2\left(\frac{1-x}{1+x}\right) \cdot f(x) = \left(\frac{1-x}{1+x}\right)^3 \] ### Step 4: Define the new equation Let’s denote this new equation as (2): \[ f^2\left(\frac{1-x}{1+x}\right) \cdot f(x) = \left(\frac{1-x}{1+x}\right)^3 \] ### Step 5: Divide the two equations Now we have two equations: 1. \( f^2(x) \cdot f\left(\frac{1-x}{1+x}\right) = x^3 \) 2. \( f^2\left(\frac{1-x}{1+x}\right) \cdot f(x) = \left(\frac{1-x}{1+x}\right)^3 \) Dividing equation (1) by equation (2): \[ \frac{f^2(x) \cdot f\left(\frac{1-x}{1+x}\right)}{f^2\left(\frac{1-x}{1+x}\right) \cdot f(x)} = \frac{x^3}{\left(\frac{1-x}{1+x}\right)^3} \] This simplifies to: \[ \frac{f(x)}{f\left(\frac{1-x}{1+x}\right)} = \frac{x^3}{\left(\frac{1-x}{1+x}\right)^3} \] ### Step 6: Solve for \( f(x) \) From the above equation, we can deduce: \[ f(x) = k \cdot x^3 \] where \( k \) is a constant. ### Step 7: Find \( f(-2) \) Now, we need to find \( f(-2) \): \[ f(-2) = k \cdot (-2)^3 = k \cdot (-8) \] ### Step 8: Determine the value of \( k \) Since the function must satisfy the original equation, we can choose \( k = 1 \) for simplicity: \[ f(-2) = -8 \] ### Step 9: Find the greatest integer function and absolute value Now, we need to find \( |[f(-2)]| \): \[ [f(-2)] = [-8] = -8 \] Thus, \[ |[f(-2)]| = | -8 | = 8 \] ### Final Answer The final answer is: \[ \boxed{8} \]
Promotional Banner

Topper's Solved these Questions

  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|13 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 7: Subjective Type Questions|1 Videos
  • FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise FUNCTION EXERCISE 5: Matching Type Questions|2 Videos
  • ESSENTIAL MATHEMATICAL TOOLS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Integer Answer Type Questions)|3 Videos
  • GRAPHICAL TRANSFORMATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|10 Videos

Similar Questions

Explore conceptually related problems

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

If f(x)=int(2+sqrt(x))/((x+1+sqrt(x))^2)dx and f(0)=0 then the value of If [f(4)] is: (where [.] represents the greatest integer function) .

if f(x) ={{:((1-|x|)/(1+x),xne-1),(1, x=-1):} then f([2x]) , where [.] represents the greatest integer function , is

Let f(x) = [x]^(2) + [x+1] - 3 , where [.] denotes the greatest integer function. Then

If f(x)=([x])/(|x|), x ne 0 , where [.] denotes the greatest integer function, then f'(1) is

Let f(x)=sec^(-1)[1+cos^(2)x], where [.] denotes the greatest integer function. Then the

If f(x)=([x])/(|x|),x ne 0 where [.] denotes the greatest integer function, then f'(1) is

If f:Rto[-1,1] where f(x)=sin((pi)/2[x]), (where [.] denotes the greatest integer fucntion), then

If f(x)=(sin([x]pi))/(x^2+x+1) , where [dot] denotes the greatest integer function, then

Let f(x) = [x] , g(x)= |x| and f{g(x)} = h(x) ,where [.] is the greatest integer function . Then h(-1) is

ARIHANT MATHS ENGLISH-FUNCTIONS-Exercise (Single Integer Answer Type Questions)
  1. Let f(x) denotes the number of zeroes in f'(x). If f(m)-f(n)=3, the va...

    Text Solution

    |

  2. If x^(2)+y^(2)=4 then find the maximum value of (x^(3)+y^(3))/(x+y)

    Text Solution

    |

  3. Let f(n) denotes the square of the sum of the digits of natural numbe...

    Text Solution

    |

  4. If [sinx]+[x/(2pi)]+[(2x)/(5pi)]=(9x)/(10pi), where [*] denotes the gr...

    Text Solution

    |

  5. The number of integral solutions of 1/x+1/y=1/6 " with " x le y " is "...

    Text Solution

    |

  6. If f(x) is a polynominal of degree 4 with leading coefficient '1' sati...

    Text Solution

    |

  7. If a+b = 3- cos 4 theta and a-b =4 sin 2theta, then ab is always less ...

    Text Solution

    |

  8. Let 'n' be the number of elements in the domain set of the function f(...

    Text Solution

    |

  9. Let f(x) be a function such that , f(x-1)+f(c+1)=sqrt(3)f(x), forall x...

    Text Solution

    |

  10. If 2f(x)=f(x y)+f(x/y) for all positive values of x and y,f(1)=0 and f...

    Text Solution

    |

  11. Let f be a function from the set of positive integers to the set of re...

    Text Solution

    |

  12. If f(x)=(x^(4)+x^(2)+1)/(x^(2)-x+1), the value of f(omega^(n)) (where ...

    Text Solution

    |

  13. If f^2(x)*f((1-x)/(1+x))=x^3, [x!=-1,1 and f(x)!=0], then find |[f(-2)...

    Text Solution

    |

  14. An odd function is symmetric about the vertical line x=a ,(a >0),a n d...

    Text Solution

    |

  15. L e t(e^x-e^(-x))/(e^x+e^(-x))=lnsqrt((1+x)/(1-x)),then find x.

    Text Solution

    |

  16. If x is real, the maximum value of (3x^(2)+9x+17)/(3x^(2)+9x+7) is (...

    Text Solution

    |

  17. If f(x) satisfies the relation f(x)+f(x+4)=f(x+2)+f(x+6) for allx , th...

    Text Solution

    |

  18. 83. A non-zero function f (x) is symmetrical about the line y=x then t...

    Text Solution

    |

  19. Let f:R rarr R and f(x)=(3x^(2)+mx+n)/(x^(2)+1). If the range of this ...

    Text Solution

    |

  20. Let f(x)be a monotic ploynomial of degree (2m-1) where m in N Then the...

    Text Solution

    |