Home
Class 12
MATHS
The value of lim(nto oo)(1)/(2) sum(r-1...

The value of ` lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r))` is equal to

A

`1 - log 2`

B

`log 4-1`

C

` log 2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit problem, we need to evaluate: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{r}{n+r} \] ### Step 1: Rewrite the expression We start by rewriting the sum in a more manageable form: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{r}{n+r} = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{r/n}{1 + r/n} \] ### Step 2: Change of variable Let \( x = \frac{r}{n} \). As \( n \to \infty \), \( r \) varies from \( 1/n \) to \( 1 \). The sum can be approximated by a Riemann sum: \[ \sum_{r=1}^{n} \frac{r/n}{1 + r/n} \cdot \frac{1}{n} \approx \int_{0}^{1} \frac{x}{1+x} \, dx \] ### Step 3: Set up the integral Thus, we rewrite our limit as an integral: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{r/n}{1 + r/n} \approx \int_{0}^{1} \frac{x}{1+x} \, dx \] ### Step 4: Evaluate the integral Now we compute the integral: \[ \int_{0}^{1} \frac{x}{1+x} \, dx \] We can simplify the integrand: \[ \frac{x}{1+x} = 1 - \frac{1}{1+x} \] Thus, the integral becomes: \[ \int_{0}^{1} \left( 1 - \frac{1}{1+x} \right) \, dx = \int_{0}^{1} 1 \, dx - \int_{0}^{1} \frac{1}{1+x} \, dx \] ### Step 5: Calculate the integrals Calculating the first integral: \[ \int_{0}^{1} 1 \, dx = 1 \] Calculating the second integral: \[ \int_{0}^{1} \frac{1}{1+x} \, dx = \left[ \ln(1+x) \right]_{0}^{1} = \ln(2) - \ln(1) = \ln(2) \] ### Step 6: Combine results Putting it all together: \[ \int_{0}^{1} \frac{x}{1+x} \, dx = 1 - \ln(2) \] ### Final Result Thus, the value of the limit is: \[ \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \frac{r}{n+r} = 1 - \ln(2) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

lim_(nto oo) (1)/(n^(2))sum_(r=1)^(n) re^(r//n)=

The value of lim_(n to oo) sum_(r=1)^(n)(r^(2))/(r^(3)+n^(3)) is -

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

sum_(r=1)^(n) 1/(log_(2^(r))4) is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

If Sigma_(r=1)^(n)t_(r)=(1)/(6)n(n+1)(n+2), AA n ge 1, then the value of lim_(nrarroo)Sigma_(r=1)^(n)(1)/(t_(r)) is equal to

lim_(n to oo) sum_(r=1)^(n) (1)/(n)e^(r//n) is

The value of lim_(ntooo)sum_(r=1)^(n)cot^(-1)((r^(3)-r+1/r)/2) is

sum_(r=1)^n r (n-r +1) is equal to :

The value of lim_(nrarroo)Sigma_(r=1)^(n)(2^(r)+3^(r))/(6^(r)) is equal to