Home
Class 12
MATHS
The value of lim(n rarr infty) (1)/(n) ...

The value of `lim_(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n)` is equal to

A

`4e`

B

`(e)/(4)`

C

`(4)/(e)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \frac{1}{n} \left( (n+1)(n+2)(n+3)\cdots(n+n) \right)^{\frac{1}{n}} \), we can follow these steps: ### Step 1: Rewrite the product The product \( (n+1)(n+2)(n+3)\cdots(n+n) \) can be rewritten using the product notation: \[ (n+1)(n+2)(n+3)\cdots(n+n) = \prod_{r=1}^{n} (n+r) \] ### Step 2: Factor out \( n \) from each term We can factor \( n \) out of each term in the product: \[ \prod_{r=1}^{n} (n+r) = \prod_{r=1}^{n} n\left(1 + \frac{r}{n}\right) = n^n \prod_{r=1}^{n} \left(1 + \frac{r}{n}\right) \] ### Step 3: Substitute back into the limit Now, substituting this back into our limit expression, we have: \[ \lim_{n \to \infty} \frac{1}{n} \left( n^n \prod_{r=1}^{n} \left(1 + \frac{r}{n}\right) \right)^{\frac{1}{n}} = \lim_{n \to \infty} \frac{1}{n} \left(n^n\right)^{\frac{1}{n}} \left( \prod_{r=1}^{n} \left(1 + \frac{r}{n}\right) \right)^{\frac{1}{n}} \] This simplifies to: \[ \lim_{n \to \infty} \frac{1}{n} n \cdot \left( \prod_{r=1}^{n} \left(1 + \frac{r}{n}\right) \right)^{\frac{1}{n}} = \lim_{n \to \infty} \left( \prod_{r=1}^{n} \left(1 + \frac{r}{n}\right) \right)^{\frac{1}{n}} \] ### Step 4: Take the logarithm Taking the logarithm of the product: \[ \log y = \lim_{n \to \infty} \frac{1}{n} \sum_{r=1}^{n} \log\left(1 + \frac{r}{n}\right) \] ### Step 5: Recognize the Riemann sum As \( n \to \infty \), the sum becomes a Riemann sum for the integral: \[ \log y = \int_{0}^{1} \log(1+x) \, dx \] ### Step 6: Evaluate the integral To evaluate \( \int_{0}^{1} \log(1+x) \, dx \), we can use integration by parts: Let \( u = \log(1+x) \) and \( dv = dx \). Then \( du = \frac{1}{1+x} \, dx \) and \( v = x \). Using integration by parts: \[ \int u \, dv = uv - \int v \, du \] We get: \[ \int_{0}^{1} \log(1+x) \, dx = \left[ x \log(1+x) \right]_{0}^{1} - \int_{0}^{1} \frac{x}{1+x} \, dx \] Evaluating the first term: \[ \left[ x \log(1+x) \right]_{0}^{1} = 1 \cdot \log(2) - 0 = \log(2) \] Now we need to evaluate \( \int_{0}^{1} \frac{x}{1+x} \, dx \): \[ \int_{0}^{1} \frac{x}{1+x} \, dx = \int_{0}^{1} \left(1 - \frac{1}{1+x}\right) \, dx = \left[ x - \log(1+x) \right]_{0}^{1} = 1 - \log(2) \] Putting it all together: \[ \int_{0}^{1} \log(1+x) \, dx = \log(2) - (1 - \log(2)) = 2\log(2) - 1 \] ### Step 7: Exponentiate to find \( y \) Thus, we have: \[ \log y = 2 \log 2 - 1 \implies y = e^{2 \log 2 - 1} = \frac{4}{e} \] ### Final Answer The value of the limit is: \[ \lim_{n \to \infty} \frac{1}{n} \left( (n+1)(n+2)(n+3)\cdots(n+n) \right)^{\frac{1}{n}} = \frac{4}{e} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

lim_(n rarr infty) sum_(k=1)^(n) (n)/(n^(2)+k^(2)x^(2)),x gt 0 is equal to

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

The value of lim_(n->oo) n^(1/n)

lim_(n rarr oo)2^(1/n)

lim_(nto oo) (2^n+5^n)^(1//n) is equal to

The value of lim_(n rarroo) sum_(r=1)^(n)(1)/(sin{((n+r)pi)/(4n)}).(pi)/(n) is equal to

lim_(n rarr oo)3^(1/n) equals

lim_(n -> oo) (((n+1)(n+2)(n+3).......2n) / n^(2n))^(1/n) is equal to

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

lim_(nto oo) {(1)/(n+1)+(1)/(n+2)+(1)/(n+3)+...+(1)/(n+n)} is, equal to