Home
Class 12
MATHS
If m,n in N, then the value of inta^b(x-...

If `m,n in N,` then the value of `int_a^b(x-a)^m(b-x)^n dx` is equal to

A

`((b-a)^(m+n). M!n!)/((m+n))!`

B

`((b-a)^(m+n+1).m!n!)/((m+n+1)!`

C

`((b-a)^(m).m!)/(m!)`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int_a^b (x-a)^m (b-x)^n \, dx \), where \( m, n \in \mathbb{N} \), we will use integration by parts and properties of definite integrals. Let's go through the steps systematically. ### Step 1: Define the Integral Let: \[ I = \int_a^b (x-a)^m (b-x)^n \, dx \] ### Step 2: Use Integration by Parts We will apply integration by parts. We can choose: - \( u = (b-x)^n \) (which we will differentiate) - \( dv = (x-a)^m \, dx \) (which we will integrate) Then, we find: - \( du = -n(b-x)^{n-1} \, dx \) - \( v = \frac{(x-a)^{m+1}}{m+1} \) ### Step 3: Apply the Integration by Parts Formula Using the integration by parts formula \( \int u \, dv = uv - \int v \, du \): \[ I = \left[ (b-x)^n \cdot \frac{(x-a)^{m+1}}{m+1} \right]_a^b - \int_a^b \frac{(x-a)^{m+1}}{m+1} \cdot (-n(b-x)^{n-1}) \, dx \] ### Step 4: Evaluate the Boundary Terms Evaluating the boundary terms: 1. At \( x = b \): \( (b-b)^n \cdot \frac{(b-a)^{m+1}}{m+1} = 0 \) 2. At \( x = a \): \( (b-a)^n \cdot \frac{(a-a)^{m+1}}{m+1} = 0 \) Thus, both boundary terms are zero: \[ I = 0 - \int_a^b \frac{(x-a)^{m+1}}{m+1} \cdot (-n(b-x)^{n-1}) \, dx \] \[ I = \frac{n}{m+1} \int_a^b (x-a)^{m+1} (b-x)^{n-1} \, dx \] ### Step 5: Set Up a Recursive Relation Let: \[ I_{m,n} = \int_a^b (x-a)^m (b-x)^n \, dx \] Then we have: \[ I_{m,n} = \frac{n}{m+1} I_{m+1,n-1} \] ### Step 6: Continue the Process We can continue this process recursively. Each time we apply integration by parts, we reduce the power of \( n \) until \( n = 0 \): \[ I_{m,0} = \int_a^b (x-a)^m (b-x)^0 \, dx = \int_a^b (x-a)^m \, dx \] This integral can be computed directly: \[ I_{m,0} = \frac{(b-a)^{m+1}}{m+1} \] ### Step 7: General Formula Continuing the recursion leads to: \[ I_{m,n} = \frac{n!}{(m+1)(m+2)(m+3)\ldots(m+n)} \cdot (b-a)^{m+n+1} \] ### Final Result Thus, the value of the integral is: \[ I = \frac{m! n! (b-a)^{m+n+1}}{(m+n+1)!} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int(dx)/(x^n(1+x^n)^(1/ n)) is equal to

int(dx)/(x(x^n+1)) is equal to

Evaluate: inta^(m x)b^(n x)dx

Evaluate: inta^(m x)b^(n x)dx

Write a value of int((logx)^n)/x\ dx

If I_(n)=int_(0)^(2)(2dx)/((1-x^(n))) , then the value of lim_(nrarroo)I_(n) is equal to

Write a value of int(logx)^n/x\ dx

If n in N , then int_(0)^(n) (x-[x])dx is equal to

If int_0^af(2a-x)dx=m and int_0^af(x)dx=n, then int_0^(2a) f(x) dx is equal to

If the coefficient of x^(2) + coefficient of x in the expanssion of (1+x)^(m)(1-x)^(n),(mnen) is equal to – m, then the value of n – m is equal to: