Home
Class 12
MATHS
The value of lim(n to oo)((n!)/(n^(n)))^...

The value of `lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1))` is equal

A

e

B

`(2)/(e)`

C

`((1)/(e))^((2)/(5))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the limit \( \lim_{n \to \infty} \left( \frac{n!}{n^n} \right)^{\frac{2n^4 + 1}{5n^5 + 1}} \), we will follow these steps: ### Step 1: Rewrite the limit We start with the expression: \[ L = \lim_{n \to \infty} \left( \frac{n!}{n^n} \right)^{\frac{2n^4 + 1}{5n^5 + 1}} \] ### Step 2: Use Stirling's approximation Using Stirling's approximation, we have: \[ n! \sim \sqrt{2 \pi n} \left( \frac{n}{e} \right)^n \] Thus, we can rewrite \( \frac{n!}{n^n} \): \[ \frac{n!}{n^n} \sim \frac{\sqrt{2 \pi n} \left( \frac{n}{e} \right)^n}{n^n} = \frac{\sqrt{2 \pi n}}{e^n} \] ### Step 3: Substitute into the limit Now substituting this back into the limit: \[ L = \lim_{n \to \infty} \left( \frac{\sqrt{2 \pi n}}{e^n} \right)^{\frac{2n^4 + 1}{5n^5 + 1}} \] ### Step 4: Simplify the exponent We can simplify the exponent: \[ \frac{2n^4 + 1}{5n^5 + 1} \sim \frac{2n^4}{5n^5} = \frac{2}{5n} \] Thus, we have: \[ L = \lim_{n \to \infty} \left( \frac{\sqrt{2 \pi n}}{e^n} \right)^{\frac{2}{5n}} \] ### Step 5: Break it down Now we can break this limit into two parts: \[ L = \lim_{n \to \infty} \left( \sqrt{2 \pi n} \right)^{\frac{2}{5n}} \cdot \left( e^{-n} \right)^{\frac{2}{5n}} \] ### Step 6: Evaluate each part 1. For the first part: \[ \left( \sqrt{2 \pi n} \right)^{\frac{2}{5n}} = (2 \pi n)^{\frac{1}{5n}} = e^{\frac{1}{5n} \log(2 \pi n)} \to e^0 = 1 \quad \text{as } n \to \infty \] 2. For the second part: \[ \left( e^{-n} \right)^{\frac{2}{5n}} = e^{-\frac{2}{5}} \quad \text{as } n \to \infty \] ### Step 7: Combine the results Combining both parts, we get: \[ L = 1 \cdot e^{-\frac{2}{5}} = e^{-\frac{2}{5}} \] ### Final Answer Thus, the value of the limit is: \[ \boxed{\frac{1}{e^{\frac{2}{5}}}} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

lim_(n to oo)(n!)/((n+1)!-n!)

The value of lim_(n->oo) n^(1/n)

The value of lim _(xto oo) ((n !)/(n ^(n)))^((3n^(3)+4)/(4n ^(4)-1)), n inN is equal to:

The value of lim_(n to oo)[(n)/(n^(2))+(n)/(n^(2)+1^(2))+(n)/(n^(2)+2^(2))+...+(n)/(n^(2)+(n-1)^(2))] is :

The value of lim_(n to oo)(1)/(n).sum_(r=1)^(2n)(r)/(sqrt(n^(2)+r^(2))) is equal to

The value of lim_(n to oo)sum_(r=1)^(n)(1)/(n) sqrt(((n+r)/(n-r))) is :

Evaluate lim_(ntooo) (4^(n)+5^(n))^(1//n)

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

lim_(n to oo)(1-2n^(2))/(5n^(2)-n+100)=

The value of lim_(nto oo)(1)/(2) sum_(r-1)^(n) ((r)/(n+r)) is equal to