Home
Class 12
MATHS
The value of lim(n rarr infty )n{(1)/(3n...

The value of `lim_(n rarr infty )n{(1)/(3n^(2)+8n+4)+(1)/(3n^(2) +16n+16)+...+n "terms"}` is equal to

A

`(1)/(2) log((9)/(5))`

B

`(1)/(3) log ((9)/(5))`

C

`(1)/(4) log ((9)/(5))`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To find the limit \[ \lim_{n \to \infty} n \left( \frac{1}{3n^2 + 8n + 4} + \frac{1}{3n^2 + 16n + 16} + \ldots + \frac{1}{3n^2 + 8n + 4n} \right) \] we can express this sum in a more manageable form. ### Step 1: Rewrite the sum The sum consists of \( n \) terms, where the \( r \)-th term can be expressed as: \[ \frac{1}{3n^2 + 8rn + 4r^2} \] Thus, we can rewrite the limit as: \[ \lim_{n \to \infty} n \sum_{r=1}^{n} \frac{1}{3n^2 + 8rn + 4r^2} \] ### Step 2: Factor out \( n^2 \) Next, we factor \( n^2 \) from the denominator: \[ \frac{1}{3n^2 + 8rn + 4r^2} = \frac{1/n^2}{3 + \frac{8r}{n} + \frac{4r^2}{n^2}} \] This gives us: \[ \lim_{n \to \infty} n \sum_{r=1}^{n} \frac{1/n^2}{3 + \frac{8r}{n} + \frac{4r^2}{n^2}} = \lim_{n \to \infty} \sum_{r=1}^{n} \frac{1}{n} \cdot \frac{1}{3 + \frac{8r}{n} + \frac{4r^2}{n^2}} \] ### Step 3: Recognize the Riemann sum As \( n \to \infty \), the expression becomes a Riemann sum for the function: \[ f(x) = \frac{1}{3 + 8x + 4x^2} \] where \( x = \frac{r}{n} \). The limit can now be expressed as an integral from 0 to 1: \[ \int_0^1 \frac{1}{3 + 8x + 4x^2} \, dx \] ### Step 4: Evaluate the integral To evaluate the integral, we can use partial fraction decomposition or substitution. 1. The denominator can be factored or simplified. The quadratic \( 4x^2 + 8x + 3 \) can be rewritten as: \[ 4(x + 1)^2 - 1 \] Thus, we can rewrite the integral as: \[ \int_0^1 \frac{1}{4(x + 1)^2 - 1} \, dx \] 2. We can use the substitution \( u = 2x + 2 \), which gives \( du = 2dx \) or \( dx = \frac{du}{2} \). 3. The limits change accordingly, and we can evaluate the integral. ### Step 5: Final calculation After performing the integral and substituting back, we find: \[ \int_0^1 \frac{1}{3 + 8x + 4x^2} \, dx = \frac{1}{4} \ln \left( \frac{9}{5} \right) \] ### Conclusion Thus, the final limit is: \[ \lim_{n \to \infty} n \left( \frac{1}{3n^2 + 8n + 4} + \frac{1}{3n^2 + 16n + 16} + \ldots + \frac{1}{3n^2 + 8n + 4n} \right) = \frac{1}{4} \ln \left( \frac{9}{5} \right) \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of lim_(n rarr infty) (1)/(n) {(n+1)(n+2)(n+3)…(n+n)}^(1//n) is equal to

The value of lim_(n to oo) (2n^(2) - 3n + 1)/(5n^(2) + 4n + 2) equals

lim_(n rarr oo)2^(1/n)

lim_(n rarr oo)((1+1/(n^(2)+cos n))^(n^(2)+n) equals

The value of lim_(n to oo)((n!)/(n^(n)))^((2n^(4)+1)/(5n^(5)+1)) is equal

The value of lim_(nrarroo)((1)/(2n)+(1)/(2n+1)+(1)/(2n+2)+…..+(1)/(4n)) is equal to

lim_(n rarr oo)3^(1/n) equals

lim_(nrarroo) [(1)/(n)+(n^(2))/((n+1)^(3))+(n^(2))/((n+2)^(3))+...+(1)/(8n)] is equal to

The value of \lim_{n \to \infty } sum_(k=1)^n (n-k)/(n^2) cos((4k)/n) equals to

The value of Sigma_(n=1)^(infty) cot^(-1) ( n^(2) + n +1) is also equal to