Home
Class 12
MATHS
Evaluate int (1)^(3) x^2 dx...

Evaluate `int _(1)^(3) x^2 dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int_{1}^{3} x^2 \, dx \), we will follow these steps: ### Step 1: Identify the formula for integration The formula for integrating \( x^n \) is given by: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] For our case, \( n = 2 \). ### Step 2: Apply the formula Using the formula, we can write: \[ \int x^2 \, dx = \frac{x^{2+1}}{2+1} = \frac{x^3}{3} \] ### Step 3: Set up the definite integral Now, we need to evaluate this from the limits 1 to 3: \[ \int_{1}^{3} x^2 \, dx = \left[ \frac{x^3}{3} \right]_{1}^{3} \] ### Step 4: Evaluate at the upper limit Substituting the upper limit \( x = 3 \): \[ \frac{3^3}{3} = \frac{27}{3} = 9 \] ### Step 5: Evaluate at the lower limit Substituting the lower limit \( x = 1 \): \[ \frac{1^3}{3} = \frac{1}{3} \] ### Step 6: Subtract the lower limit from the upper limit Now, we subtract the value at the lower limit from the value at the upper limit: \[ 9 - \frac{1}{3} \] ### Step 7: Simplify the result To perform the subtraction, we convert 9 into a fraction: \[ 9 = \frac{27}{3} \] So, \[ \frac{27}{3} - \frac{1}{3} = \frac{27 - 1}{3} = \frac{26}{3} \] ### Final Answer Thus, the value of the integral \( \int_{1}^{3} x^2 \, dx \) is: \[ \frac{26}{3} \] ---
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

Evaluate int_(1)^(3)(x^(2)-2x)dx

Evaluate : int _1^(3) (x^(2) +5x) dx , expressing as a limit of sum.

Evaluate int_1^2 (x+1)/x^3 dx

Evaluate int(x-1)(x-3)\dx

Evaluate: int_1^3(x^2+x)dx

Evaluate: int(x^3-1)/(x^2)\ dx

Evaluate : int _(-2)^(3) |1 - x^(2) | dx

Evaluate int\ x(1-x)^(2//3)\ dx

Evaluate: int1/(3+2x-x^2)\ dx

Evaluate: int_1^3(2x^2+5x)dx