Home
Class 12
MATHS
The value of f(k)=int(0)^(pi//2) log (si...

The value of `f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta` is equal to

A

`pi log (1+k)- pi log ^(2)`

B

`pi log 2 - log (1+k)`

C

`log(1+k) - pi log 2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the integral \[ f(k) = \int_0^{\frac{\pi}{2}} \log(\sin^2 \theta + k^2 \cos^2 \theta) \, d\theta. \] ### Step 1: Use the property of definite integrals We can use the property of definite integrals that states: \[ \int_0^a f(x) \, dx = \int_0^a f(a - x) \, dx. \] Applying this property, we have: \[ f(k) = \int_0^{\frac{\pi}{2}} \log(\cos^2 \theta + k^2 \sin^2 \theta) \, d\theta. \] ### Step 2: Differentiate with respect to \( k \) Now, we differentiate \( f(k) \) with respect to \( k \): \[ \frac{df}{dk} = \int_0^{\frac{\pi}{2}} \frac{d}{dk} \log(\sin^2 \theta + k^2 \cos^2 \theta) \, d\theta. \] Using the chain rule, we get: \[ \frac{d}{dk} \log(\sin^2 \theta + k^2 \cos^2 \theta) = \frac{2k \cos^2 \theta}{\sin^2 \theta + k^2 \cos^2 \theta}. \] Thus, \[ \frac{df}{dk} = \int_0^{\frac{\pi}{2}} \frac{2k \cos^2 \theta}{\sin^2 \theta + k^2 \cos^2 \theta} \, d\theta. \] ### Step 3: Change of variable To simplify the integral, we can use the substitution \( t = \tan \theta \), which gives \( \sin^2 \theta = \frac{t^2}{1+t^2} \) and \( \cos^2 \theta = \frac{1}{1+t^2} \). The differential \( d\theta \) becomes \( \frac{dt}{1+t^2} \). The limits change as follows: when \( \theta = 0 \), \( t = 0 \) and when \( \theta = \frac{\pi}{2} \), \( t \to \infty \). Thus, we have: \[ \frac{df}{dk} = \int_0^{\infty} \frac{2k \cdot \frac{1}{1+t^2}}{\frac{t^2}{1+t^2} + k^2 \cdot \frac{1}{1+t^2}} \cdot \frac{dt}{1+t^2}. \] This simplifies to: \[ \frac{df}{dk} = 2k \int_0^{\infty} \frac{dt}{(1+t^2)(t^2 + k^2)}. \] ### Step 4: Solve the integral The integral \[ \int_0^{\infty} \frac{dt}{(1+t^2)(t^2 + k^2)} \] can be evaluated using partial fractions or known results. The result is: \[ \int_0^{\infty} \frac{dt}{(1+t^2)(t^2 + k^2)} = \frac{\pi}{2(1+k)}. \] Thus, \[ \frac{df}{dk} = 2k \cdot \frac{\pi}{2(1+k)} = \frac{k\pi}{1+k}. \] ### Step 5: Integrate to find \( f(k) \) Now we integrate \( \frac{df}{dk} \) with respect to \( k \): \[ f(k) = \int \frac{k\pi}{1+k} \, dk. \] Using the substitution \( u = 1 + k \), we have \( du = dk \) and \( k = u - 1 \): \[ f(k) = \int \frac{(u-1)\pi}{u} \, du = \pi \int (1 - \frac{1}{u}) \, du = \pi \left( u - \log u \right) + C. \] Substituting back \( u = 1 + k \): \[ f(k) = \pi \left( (1 + k) - \log(1 + k) \right) + C. \] ### Step 6: Determine the constant \( C \) To find \( C \), we can evaluate \( f(0) \): \[ f(0) = \int_0^{\frac{\pi}{2}} \log(\sin^2 \theta) \, d\theta = -\frac{\pi}{2} \log(2). \] Setting \( k = 0 \): \[ f(0) = \pi (1 - \log(1)) + C = \pi + C. \] Thus, \[ -\frac{\pi}{2} \log(2) = \pi + C \implies C = -\frac{\pi}{2} \log(2) - \pi. \] ### Final Result The final expression for \( f(k) \) is: \[ f(k) = \pi \left( (1 + k) - \log(1 + k) \right) - \frac{\pi}{2} \log(2) - \pi. \] This simplifies to: \[ f(k) = \pi \left( k - \log(1 + k) - \frac{1}{2} \log(2) \right). \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

The value of int_(0)^(pi//2)(log(1+x sin^(2) theta))/(sin^(2)theta)d theta,xge0 is equal to

The value of 2 sin^2 theta + k cos^2 2 theta =1 , then k is equal to :

Let f beintegrable over [0,a] for any real value of a . If I_(1)=int_(0)^(pi//2)cos theta f(sin theta +cos^(2) theta) d theta and I_(2)=int_(0)^(pi//2) sin 2 theta f(sin theta+cos^(2) theta) d theta , then

Evaluate int_(0)^(pi//2) cos theta tan ^(-1) ( sin theta)d theta .

If f(x)=int_0^(pi/2)ln(1+xsin^2theta)/(sin^2theta) d theta, x >= 0 then :

The value of the integral int_(0)^(pi//4) (sin theta+cos theta)/(9+16 sin 2theta)d theta , is

int_0^(pi//2)(theta/sintheta)^2d theta=

If f (n)= 1/pi int _(0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2) theta), n in N, then evulate (f (15)+ f (3))/( f (12) -f (10)).

The value of I(n) =int_0^pi(sin ^2n theta)/(sin^2theta) d theta is (AA n in N)

If sin^6 theta + cos^6 theta + k sin^2 2theta =1 , then k is equal to :