Home
Class 12
MATHS
If I(mn)=int(0)^(1)x^(m-1)(1-x)^(n-1)dx,...

If `I(mn)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx,(m, n epsilon I, m,n ge 0 )`, then

A

`(m!n!)/((m+n+2)!`

B

`(2m!n!)/((m+n+1)!)`

C

`(m!n!)/((m+n+1)!)`

D

None of tese

Text Solution

Verified by Experts

The correct Answer is:
C
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If I(m,n)=int_0^1x^(m-1)(1-x)^(n-1)dx , then

IfI(m , n)=int_0^1x^(m-1)(1-x)^(n-1)dx ,(m , n in I ,m ,ngeq0),t h e n (a) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m-n))dx (b) I(m , n)=int_0^oo(x^(m-1))/((1+x)^(m+n))dx (c) I(m , n)=int_0^oo(x^(n-1))/((1+x)^(m+n))dx (d) I(m , n)=int_0^oo(x^n)/((1+x)^(m+n))dx

Evaluate : int_(0)^(1)x(1-x)^(n)dx

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-x)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0 . int_(0)^(1)(x^(m-1)+x^(n-1))/((1+x)^(m+n))dx=

Let I_(n) = int_(0)^(1)x^(n)(tan^(1)x)dx, n in N , then

If I_(m,n)= int_(0)^(1) x^(m) (ln x)^(n) dx then I_(m,n) is also equal to

Let m,n be two positive real numbers and define f(n)=int_(0)^(oo)x^(n-1)e^(-x)dx and g(m,n)=int_(0)^(1)x^(m-1)(1-m)^(n-1)dx . It is known that f(n) for n gt 0 is finite and g(m, n) = g(n, m) for m, n gt 0. int_(0)^(1)x^(m)(log_(e).(1)/(x))dx=

Let I_(n) = int_(0)^(1)(1-x^(3))^(n)dx, (nin N) then

Evaluate int_(0)^(1)((log(1/x))^(n-1)dx .

If mgt0, ngt0 , the definite integral I=int_0^1 x^(m-1)(1-x)^(n-1)dx depends upon the values of m and n is denoted by beta(m,n) , called the beta function.Obviously, beta(n,m)=beta(m,n) .Now answer the question:If int_0^oo x^(m-1)/(1+x)^(m+n)dx=k int_0^oo x^(n-1)/(1+x)^(m+n)dx , then k is equal to (A) m/n (B) 1 (C) n/m (D) none of these