Home
Class 12
MATHS
The value of I(n) =int0^pi(sin ^2n thet...

The value of ` I(n) =int_0^pi(sin ^2n theta)/(sin^2theta) d theta ` is `(AA n in N)`

A

(a)`npi`

B

(b)`(npi)/(2)`

C

(c)`(npi)/(4)`

D

(d)None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I(n) = \int_0^\pi \frac{\sin^2(n \theta)}{\sin^2(\theta)} d\theta \), we will follow a systematic approach. ### Step-by-Step Solution: 1. **Substituting the Integral**: We start with the integral: \[ I(n) = \int_0^\pi \frac{\sin^2(n \theta)}{\sin^2(\theta)} d\theta \] 2. **Evaluating for \( n = 1 \)**: Let's first evaluate \( I(1) \): \[ I(1) = \int_0^\pi \frac{\sin^2(\theta)}{\sin^2(\theta)} d\theta = \int_0^\pi 1 \, d\theta \] This simplifies to: \[ I(1) = \left[ \theta \right]_0^\pi = \pi \] 3. **Evaluating for \( n = 2 \)**: Next, we evaluate \( I(2) \): \[ I(2) = \int_0^\pi \frac{\sin^2(2\theta)}{\sin^2(\theta)} d\theta \] We can use the identity \( \sin^2(2\theta) = 4\sin^2(\theta)\cos^2(\theta) \): \[ I(2) = \int_0^\pi \frac{4\sin^2(\theta)\cos^2(\theta)}{\sin^2(\theta)} d\theta = 4 \int_0^\pi \cos^2(\theta) d\theta \] 4. **Integrating \( \cos^2(\theta) \)**: We can use the identity \( \cos^2(\theta) = \frac{1 + \cos(2\theta)}{2} \): \[ I(2) = 4 \int_0^\pi \frac{1 + \cos(2\theta)}{2} d\theta = 2 \int_0^\pi (1 + \cos(2\theta)) d\theta \] Evaluating this gives: \[ = 2 \left[ \theta + \frac{\sin(2\theta)}{2} \right]_0^\pi = 2 \left[ \pi + 0 \right] = 2\pi \] 5. **Generalizing for \( n \)**: From our evaluations, we observe that: \[ I(1) = \pi, \quad I(2) = 2\pi \] It appears that \( I(n) = n\pi \) for natural numbers \( n \). 6. **Conclusion**: Therefore, we conclude that: \[ I(n) = n\pi \quad \text{for } n \in \mathbb{N} \] ### Final Answer: \[ I(n) = n\pi \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Single Option Correct Type Questions)|34 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Definite intefral Exercise 1 : Single Option Correct Type Questions|1 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 5|20 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_0^(pi/2)ln(1+xsin^2theta)/(sin^2theta) d theta, x >= 0 then :

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

The value of int_(0)^(pi//2)(log(1+x sin^(2) theta))/(sin^(2)theta)d theta,xge0 is equal to

The value of the integral int_(0)^(2pi)(sin2 theta)/(a-b cos theta)d theta when a gt b gt 0 , is

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

Show that int_0^(pi/2)sqrt((sin2theta))sintheta d theta=pi/4

The value of the integral int_(0)^(pi//4) (sin theta+cos theta)/(9+16 sin 2theta)d theta , is

If f (n)= 1/pi int _(0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2) theta), n in N, then evulate (f (15)+ f (3))/( f (12) -f (10)).

Evaluate: int_(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a >0

Solution of the equation sin (sqrt(1+sin 2 theta))= sin theta + cos theta is (n in Z)