Home
Class 12
MATHS
The value of I=int(-pi//2)^(pi//2) (cos ...

The value of `I=int_(-pi//2)^(pi//2) (cos x dx )/(1+2[ sin^(-1)(sin x)])` (where ,[.] denotes greatest integer function ) is …

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ I = \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{\cos x \, dx}{1 + 2 \lfloor \sin^{-1}(\sin x) \rfloor} \] we start by simplifying the expression inside the integral. ### Step 1: Simplifying \(\sin^{-1}(\sin x)\) The function \(\sin^{-1}(\sin x)\) returns \(x\) for \(x\) in the range \([- \frac{\pi}{2}, \frac{\pi}{2}]\). Therefore, we can write: \[ \lfloor \sin^{-1}(\sin x) \rfloor = \lfloor x \rfloor \] ### Step 2: Determine the value of \(\lfloor x \rfloor\) The greatest integer function \(\lfloor x \rfloor\) takes different values depending on the interval of \(x\): - For \(x \in [-\frac{\pi}{2}, -1)\), \(\lfloor x \rfloor = -2\) - For \(x \in [-1, 0)\), \(\lfloor x \rfloor = -1\) - For \(x \in [0, 1)\), \(\lfloor x \rfloor = 0\) - For \(x \in [1, \frac{\pi}{2}]\), \(\lfloor x \rfloor = 1\) ### Step 3: Break the integral into segments We can split the integral into four parts based on the intervals identified: \[ I = \int_{-\frac{\pi}{2}}^{-1} \frac{\cos x \, dx}{1 + 2(-2)} + \int_{-1}^{0} \frac{\cos x \, dx}{1 + 2(-1)} + \int_{0}^{1} \frac{\cos x \, dx}{1 + 2(0)} + \int_{1}^{\frac{\pi}{2}} \frac{\cos x \, dx}{1 + 2(1)} \] This simplifies to: \[ I = \int_{-\frac{\pi}{2}}^{-1} \frac{\cos x \, dx}{-3} + \int_{-1}^{0} \frac{\cos x \, dx}{-1} + \int_{0}^{1} \cos x \, dx + \int_{1}^{\frac{\pi}{2}} \frac{\cos x \, dx}{3} \] ### Step 4: Evaluate each integral 1. **First Integral:** \[ \int_{-\frac{\pi}{2}}^{-1} \frac{\cos x \, dx}{-3} = -\frac{1}{3} \left[ \sin x \right]_{-\frac{\pi}{2}}^{-1} = -\frac{1}{3} (\sin(-1) - \sin(-\frac{\pi}{2})) = -\frac{1}{3} (\sin(-1) + 1) \] 2. **Second Integral:** \[ \int_{-1}^{0} \frac{\cos x \, dx}{-1} = -\left[ \sin x \right]_{-1}^{0} = -(\sin(0) - \sin(-1)) = \sin(-1) \] 3. **Third Integral:** \[ \int_{0}^{1} \cos x \, dx = [\sin x]_{0}^{1} = \sin(1) - \sin(0) = \sin(1) \] 4. **Fourth Integral:** \[ \int_{1}^{\frac{\pi}{2}} \frac{\cos x \, dx}{3} = \frac{1}{3} \left[ \sin x \right]_{1}^{\frac{\pi}{2}} = \frac{1}{3} (\sin(\frac{\pi}{2}) - \sin(1)) = \frac{1}{3} (1 - \sin(1)) \] ### Step 5: Combine all parts Now, we combine all the parts: \[ I = -\frac{1}{3} (\sin(-1) + 1) + \sin(-1) + \sin(1) + \frac{1}{3} (1 - \sin(1)) \] ### Step 6: Simplify the expression Combining the terms, we notice that \(\sin(-1) = -\sin(1)\): \[ I = -\frac{1}{3} (-\sin(1) + 1) + (-\sin(1)) + \sin(1) + \frac{1}{3} (1 - \sin(1)) \] This simplifies to: \[ I = 0 \] ### Final Result Thus, the value of the integral \(I\) is: \[ \boxed{0} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|4 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If f(x) =[ sin ^(-1)(sin 2x )] (where, [] denotes the greatest integer function ), then

lim_(x->pi/2) sinx/(cos^-1[1/4(3sinx-sin3x)]) where [] denotes greatest integer function id:

f(x)=sin^-1[log_2(x^2/2)] where [ . ] denotes the greatest integer function.

The value of int_(-pi//2)^(pi//2)(sin^(2)x)/(1+2^(x))dx is

The value of int_(-pi//2)^(pi//2)[ cot^(-1)x] dx (where ,[.] denotes greatest integer function) is equal to

the value of int_(0)^([x]) dx (where , [.] denotes the greatest integer function)

The value of int_(0)^(2pi) |cos x -sin x|dx is

f(x)= cosec^(-1)[1+sin^(2)x] , where [*] denotes the greatest integer function.

lim _(x to (pi)/(2))(sin x )/(cos ^(-1)[(1)/(4 ) (3 sin x- sin 3x)]), (where [.] denotes greatest integer function) is :

The value of int_(-pi//2)^(pi//2)dx/([x]+[sinx]+4) where [t] denotes the greatest integer less or equal to t, is