Home
Class 12
MATHS
If f(x)=1/pi int0^(pi/2) sin^2(ntheta)/s...

If `f(x)=1/pi int_0^(pi/2) sin^2(ntheta)/sin^2theta d(theta)` then evaluate `(f(15)+f(3))/(f(15)-f(9))`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to evaluate the expression \((f(15) + f(3)) / (f(15) - f(9))\) where \(f(x) = \frac{1}{\pi} \int_0^{\frac{\pi}{2}} \frac{\sin^2(n\theta)}{\sin^2(\theta)} d\theta\). ### Step 1: Determine \(f(n)\) From the video transcript, we can derive that: \[ f(n) = \frac{n}{2} \] This means we can find \(f(15)\), \(f(3)\), and \(f(9)\) directly. ### Step 2: Calculate \(f(15)\) Using the formula: \[ f(15) = \frac{15}{2} = 7.5 \] ### Step 3: Calculate \(f(3)\) Using the formula: \[ f(3) = \frac{3}{2} = 1.5 \] ### Step 4: Calculate \(f(9)\) Using the formula: \[ f(9) = \frac{9}{2} = 4.5 \] ### Step 5: Substitute values into the expression Now we substitute \(f(15)\), \(f(3)\), and \(f(9)\) into the expression: \[ \frac{f(15) + f(3)}{f(15) - f(9)} = \frac{7.5 + 1.5}{7.5 - 4.5} \] ### Step 6: Simplify the numerator and denominator Calculating the numerator: \[ 7.5 + 1.5 = 9 \] Calculating the denominator: \[ 7.5 - 4.5 = 3 \] ### Step 7: Final calculation Now we can compute the final result: \[ \frac{9}{3} = 3 \] Thus, the final answer is: \[ \boxed{3} \]
Promotional Banner

Topper's Solved these Questions

  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos
  • DEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise (Matching Type Questions)|4 Videos
  • COORDINATE SYSTEM AND COORDINATES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|7 Videos
  • DETERMINANTS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|18 Videos

Similar Questions

Explore conceptually related problems

If f(x)=int_0^(pi/2)ln(1+xsin^2theta)/(sin^2theta) d theta, x >= 0 then :

If f (n)= 1/pi int _(0) ^(pi//2) (sin ^(2) (n theta) d theta)/(sin ^(2) theta), n in N, then evulate (f (15)+ f (3))/( f (12) -f (10)).

If f(theta) = (1- sin 2theta + cos 2theta)/(2sin 2theta) then value of f(11^o). f(34^o) is

If f(theta)=(1-sin2theta+cos2theta)/(2cos2theta) , then value of 8f(11^0)*f(34^0) is ____

The value of f(k)=int_(0)^(pi//2) log (sin ^(2) theta +k^(2) cos^(2) theta) d theta is equal to

If f(x)=(2x)/(1+x^2)\ , show that f(tantheta)=sin2theta)

Let f(x) = int_(x)^(x+(pi)/(3))|sin theta|d theta(x in [0,pi])

If f(x)=2(1+sin x), then evaluate f((pi)/(2)) .

Evaluate: int_(-pi/2)^(pi/2)log((a-sin theta)/(a+sin theta)) d theta,a >0

Let f beintegrable over [0,a] for any real value of a . If I_(1)=int_(0)^(pi//2)cos theta f(sin theta +cos^(2) theta) d theta and I_(2)=int_(0)^(pi//2) sin 2 theta f(sin theta+cos^(2) theta) d theta , then