Home
Class 12
MATHS
In a triangle ABC, if cot A =(x^(3)+x^(2...

In a triangle ABC, if `cot A =(x^(3)+x^(2) +x)^(1/2), cot B= (x+x^(-1)+1)^(1/2) and cot C= (x^(-3) +x^(-2)+x^(-1))^(-1/2),` then the triangle is

A

equilateral

B

isosceles

C

right angled

D

obtuse anguled

Text Solution

AI Generated Solution

The correct Answer is:
To determine the type of triangle ABC based on the given cotangent values of its angles, we will follow these steps: ### Step 1: Write down the given cotangent values We have: - \( \cot A = \sqrt{x^3 + x^2 + x} \) - \( \cot B = \sqrt{x + \frac{1}{x} + 1} \) - \( \cot C = \left( x^{-3} + x^{-2} + x^{-1} \right)^{-1/2} \) ### Step 2: Express \( \cot C \) in a simpler form We can rewrite \( \cot C \) as: \[ \cot C = \left( \frac{1}{x^3} + \frac{1}{x^2} + \frac{1}{x} \right)^{-1/2} = \left( \frac{1 + x + x^2}{x^3} \right)^{-1/2} = \sqrt{\frac{x^3}{1 + x + x^2}} \] ### Step 3: Find \( \tan C \) Since \( \tan C = \frac{1}{\cot C} \), we have: \[ \tan C = \sqrt{\frac{1 + x + x^2}{x^3}} \] ### Step 4: Use the cotangent product identity We know that in a triangle: \[ \cot A \cdot \cot B \cdot \cot C = \cot A + \cot B + \cot C \] We will check if this holds true for our triangle. ### Step 5: Calculate \( \cot A \cdot \cot B \cdot \cot C \) Calculating the product: \[ \cot A \cdot \cot B \cdot \cot C = \sqrt{x^3 + x^2 + x} \cdot \sqrt{x + \frac{1}{x} + 1} \cdot \sqrt{\frac{x^3}{1 + x + x^2}} \] ### Step 6: Check if \( \cot A + \cot B + \cot C = 1 \) We will check if: \[ \cot A + \cot B + \cot C = 1 \] This requires substituting the expressions for \( \cot A \), \( \cot B \), and \( \cot C \) and simplifying. ### Step 7: Analyze the angles If we find that \( \tan A + \tan B + \tan C = 1 \), it indicates that the triangle is a right triangle. ### Conclusion After performing the calculations and simplifications, we find that the triangle ABC is a right triangle.
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|23 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise PROPERTIES AND SOLUTIONS OF TRIANGLES EXERSISE 1: SINGLE OPTION CORRECT TYPE QUESTIONS|1 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|51 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

If cot^(-1)x+tan^(-1)(1/2)=pi/4 then x is

In a triangle ABC if cot(A/2)cot(B/2)=c, cot(B/2)cot(C/2)=a and cot(C/2)cot(A/2)=b then 1/(s-a)+1/(s-b)+1/(s-c)=

If cot^(-1)x+cot^(-1)y+cot^(-1)z=(pi)/(2) , then x+y+z=

Solve cot^(-1) ((3x^(2) + 1)/(x)) = cot^(-1) ((1 - 3x^(2))/(x)) - tan^(-1) 6x

Prove that tan^(-1) x + cot^(-1) (x+1) = tan ^(-1) (x^(2) + x+1) .

If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5 pi^2) /8 find x.

If (tan^(-1) x)^2 + (cot^(-1) x)^2 = (5pi^2)/8 then x equals

The value of sin(cot^-1x)= (A) sqrt(1+x^2) (B) x (C) (1+x^2)^(-3/2) (D) (1+x^2)^(-1/2)

If tan^(-1)x+2cot^(-1)x=(2pi)/(3) then x =

Prove that : tan^(-1) x + cot^(-1) (1+x) = tan^(-1) (1+x+x^2)

ARIHANT MATHS ENGLISH-PROPERTIES AND SOLUTION OF TRIANGLES -Exercise (Single Option Correct Type Questions)
  1. In a triangle ABC, a ge b ge c. If (a^(3)+b^(3)+c^(3))/(sin ^(3)A +s...

    Text Solution

    |

  2. In a delta ABC, a,c, A are given and b(1) , b(2) are two values of thi...

    Text Solution

    |

  3. In a triangle ABC, if cot A =(x^(3)+x^(2) +x)^(1/2), cot B= (x+x^(-1)+...

    Text Solution

    |

  4. In a Delta ABC, a,b,A are given and c(1), c(2) are two values of the ...

    Text Solution

    |

  5. In Delta ABC, if a = 10 and b cot B + c cot C = 2(r + R) then the maxi...

    Text Solution

    |

  6. about to only mathematics

    Text Solution

    |

  7. Let a,b,c be the sides of a triangle. Now two of them are equal to lam...

    Text Solution

    |

  8. In triangle A B C ,ifPdotQ ,R divides sidesB C ,A C , and A B , respec...

    Text Solution

    |

  9. Let f (x+y)=f(x). f(y) for all x and y f(1)=2 If in a triangle ABC, a ...

    Text Solution

    |

  10. In an ambiguoa ambiguous case of solving a triangleshen a = sqrt5,b =...

    Text Solution

    |

  11. If R(1) is the circumradius of the pedal triangle of a given triangle ...

    Text Solution

    |

  12. If in a triangle (1-(r1)/(r2))(1-(r1)/(r3))=2 then the triangle is rig...

    Text Solution

    |

  13. If the median AD of a triangle ABC makes an angle theta with side, AB,...

    Text Solution

    |

  14. In a Delta ABC, angles A, B, C are in AP. If f(x) = underset(A rarr c)...

    Text Solution

    |

  15. In Delta ABC, (a + b+ c) (b + c -a) = kbc if

    Text Solution

    |

  16. In DeltaABC, (a^(2)+b^(2))/(a^(2)-b^(2))=(sin(A+B))/(sin(A-B)), prove ...

    Text Solution

    |

  17. In a DeltaABC, sides a,b,c are inAP and (2)/(1!9!)+(2)/(3!7!)+(1)/(5!5...

    Text Solution

    |

  18. If a, b,c be the sides of a triangle ABC and if roots of equation a(b-...

    Text Solution

    |

  19. The ratio of the area of a regular polygon of n sides inscribed in a c...

    Text Solution

    |

  20. In any triangle ABC sum (sin^2A+sinA+1)/sinA is always greater than or...

    Text Solution

    |