Home
Class 12
MATHS
If the incircel of the triangle ABC, thr...

If the incircel of the triangle ABC, through it's circumcentre, then the `cos A + cos B + cos C` is

A

` -2`

B

`sqrt2`

C

`-sqrt2`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we need to find the value of \( \cos A + \cos B + \cos C \) given that the incircle of triangle \( ABC \) passes through its circumcenter. ### Step-by-Step Solution: 1. **Understanding the Triangle and Circles**: - Let \( I \) be the incenter of triangle \( ABC \) and \( O \) be the circumcenter. - The incircle touches the sides of the triangle, and the circumcircle passes through the vertices of the triangle. 2. **Setting Up the Relationship**: - The distance \( IO \) between the incenter and circumcenter can be expressed using the formula: \[ IO^2 = R^2 - 2Rr \] where \( R \) is the circumradius and \( r \) is the inradius. 3. **Given Condition**: - Since the incircle passes through the circumcenter, we have \( IO = r \). - Therefore, we can set up the equation: \[ r^2 = R^2 - 2Rr \] 4. **Rearranging the Equation**: - Rearranging gives us: \[ R^2 + 2Rr - r^2 = 0 \] 5. **Dividing by \( R^2 \)**: - Dividing the entire equation by \( R^2 \) yields: \[ \left(\frac{r}{R}\right)^2 + 2\left(\frac{r}{R}\right) - 1 = 0 \] - Let \( x = \frac{r}{R} \), then the equation becomes: \[ x^2 + 2x - 1 = 0 \] 6. **Solving the Quadratic Equation**: - Using the quadratic formula \( x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a} \): \[ x = \frac{-2 \pm \sqrt{2^2 - 4 \cdot 1 \cdot (-1)}}{2 \cdot 1} = \frac{-2 \pm \sqrt{4 + 4}}{2} = \frac{-2 \pm \sqrt{8}}{2} = -1 \pm \sqrt{2} \] 7. **Choosing the Positive Root**: - Since \( \frac{r}{R} > 0 \), we take: \[ \frac{r}{R} = \sqrt{2} - 1 \] 8. **Finding \( \cos A + \cos B + \cos C \)**: - The formula for \( \cos A + \cos B + \cos C \) is given by: \[ \cos A + \cos B + \cos C = 1 + \frac{r}{R} \] - Substituting \( \frac{r}{R} = \sqrt{2} - 1 \): \[ \cos A + \cos B + \cos C = 1 + (\sqrt{2} - 1) = \sqrt{2} \] ### Final Answer: \[ \cos A + \cos B + \cos C = \sqrt{2} \]
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (More Than One Correct Option Type Questions)|23 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Statement I And Ii Type Questions)|11 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise PROPERTIES AND SOLUTIONS OF TRIANGLES EXERSISE 1: SINGLE OPTION CORRECT TYPE QUESTIONS|1 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|51 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

In triangle ABC, /_C = (2pi)/3 then the value of cos^2 A + cos^2 B - cos A.cos B is equal

In a triangle ABC, cos A+cos B+cos C=

If A,B,C are the angles of triangle ABC, then the minimum value of |{:(-1,cos C , cos B),(cos C , -1, cos A ) , (cos B , cos A , -1):}| is equal to :

If one of the angles A,B,C of a triangle is not acute, show that cos^2A+cos^2B+cos^2C=1

In a triangle ABC , the line joining the circumcentre and incentre is parallel to BC, then Cos B + Cos C is equal to:

If a, b, c are sides of the triangle ABC and |(1,a, b),(1,c,a),(1,b,c)|=0 , then the value of cos 2A+cos 2B+cos 2C is equal to

In triangle ABC, a = 2, b = 3,c = 4 , then the value of cos A is

In Delta ABC it is given distance between the circumcentre (O) and orthocentre (H) is R sqrt(1-8 cos A cos B cos C) . If Q is the midopoint of OH, then AQ is

If f,g,h are internal bisectoirs of the angles of a triangle ABC, show that 1/f cos, A/2+ 1/g cos, B/2+1/h cos, C/2= 1/a+1/b+1/c

In a Delta ABC , cos (A + B) + cos C =

ARIHANT MATHS ENGLISH-PROPERTIES AND SOLUTION OF TRIANGLES -Exercise (Single Option Correct Type Questions)
  1. The ratio of the area of a regular polygon of n sides inscribed in a c...

    Text Solution

    |

  2. In any triangle ABC sum (sin^2A+sinA+1)/sinA is always greater than or...

    Text Solution

    |

  3. If the incircel of the triangle ABC, through it's circumcentre, then t...

    Text Solution

    |

  4. The perimeter of a triangle ABC is saix times the arithmetic mean of ...

    Text Solution

    |

  5. If there are only two linear functions f and g which map [1,2] on [4,6...

    Text Solution

    |

  6. A circle is inscribed in an equilateral triangle of side adot The area...

    Text Solution

    |

  7. In any triangle ABC, if sin A , sin B, sin C are in AP, then the maxim...

    Text Solution

    |

  8. In a DeltaABC, 2 cos A=(sin B)/(sin C) and 2 ^(tan^(2)B) is a solution...

    Text Solution

    |

  9. A triangle is inscribed in a circle. The vertices of the triangle divi...

    Text Solution

    |

  10. If a,b and c arethe sides of a traiangle such that b.c =lamda ^(2), th...

    Text Solution

    |

  11. In a triangle ABC, AD is the altitude from A. If b gt c. angleC = 23^(...

    Text Solution

    |

  12. In triangle ABC, a=5, b=4 and cos(A+B)=(31)/(32) In this triangle,c=

    Text Solution

    |

  13. In a A B C ,ifA B=x , B C=x+1,/C=pi/3 , then the least integer value ...

    Text Solution

    |

  14. In an equilateral triangle, three coins of radii 1 unit each are kept ...

    Text Solution

    |

  15. The sides of a triangle are in AP. If the angles A and C are the great...

    Text Solution

    |

  16. If in Delta ABC, c(a+b) cos ""B/2=b (a+c) cos ""C/2, the triangle is

    Text Solution

    |

  17. In a triangle ABC , the line joining the circumcentre and incentre is ...

    Text Solution

    |

  18. In the given figure, AB is the diameter of the circle, centered at O. ...

    Text Solution

    |

  19. If in a DeltaABC, AD, BE and CF are the altitudes and R is the circumr...

    Text Solution

    |

  20. In a right angled triangle ABC, the bisector of the right angle C divi...

    Text Solution

    |