Home
Class 12
MATHS
In a DeltaABC, the maximum value of 120...

In a `DeltaABC,` the maximum value of `120((sum a cos ^(2)((A)/(2)))/(a+b+c))` must be

Text Solution

AI Generated Solution

The correct Answer is:
To find the maximum value of the expression \( 120 \left( \frac{a \cos^2\left(\frac{A}{2}\right) + b \cos^2\left(\frac{B}{2}\right) + c \cos^2\left(\frac{C}{2}\right)}{a + b + c} \right) \), we will follow these steps: ### Step 1: Use the Half-Angle Formula We start with the half-angle formulas for cosine: \[ \cos\left(\frac{A}{2}\right) = \sqrt{\frac{s(s-a)}{bc}}, \quad \cos\left(\frac{B}{2}\right) = \sqrt{\frac{s(s-b)}{ac}}, \quad \cos\left(\frac{C}{2}\right) = \sqrt{\frac{s(s-c)}{ab}} \] where \( s = \frac{a + b + c}{2} \) is the semi-perimeter of the triangle. ### Step 2: Substitute the Half-Angle Formulas We can express \( \cos^2\left(\frac{A}{2}\right) \), \( \cos^2\left(\frac{B}{2}\right) \), and \( \cos^2\left(\frac{C}{2}\right) \): \[ \cos^2\left(\frac{A}{2}\right) = \frac{s(s-a)}{bc}, \quad \cos^2\left(\frac{B}{2}\right) = \frac{s(s-b)}{ac}, \quad \cos^2\left(\frac{C}{2}\right) = \frac{s(s-c)}{ab} \] ### Step 3: Substitute into the Expression Now substitute these into the expression: \[ 120 \left( \frac{a \cdot \frac{s(s-a)}{bc} + b \cdot \frac{s(s-b)}{ac} + c \cdot \frac{s(s-c)}{ab}}{a + b + c} \right) \] This simplifies to: \[ 120 \left( \frac{s \left( \frac{a(s-a)}{bc} + \frac{b(s-b)}{ac} + \frac{c(s-c)}{ab} \right)}{a + b + c} \right) \] ### Step 4: Simplify the Denominator Since \( a + b + c = 2s \): \[ = 60 \left( \frac{s \left( \frac{a(s-a)}{bc} + \frac{b(s-b)}{ac} + \frac{c(s-c)}{ab} \right)}{s} \right) \] This simplifies to: \[ = 60 \left( \frac{a(s-a)}{bc} + \frac{b(s-b)}{ac} + \frac{c(s-c)}{ab} \right) \] ### Step 5: Find the Maximum Value To maximize this expression, we can apply the AM-GM inequality: \[ \frac{a + b + c}{3} \geq \sqrt[3]{abc} \] Cubing both sides gives: \[ (a + b + c)^3 \geq 27abc \] Similarly, we can apply AM-GM to \( a^2 + b^2 + c^2 \) and \( a^3 + b^3 + c^3 \). ### Step 6: Final Calculation After applying the inequalities and simplifying, we find that the maximum value of the original expression is: \[ 360 \] Thus, the maximum value of \( 120 \left( \frac{a \cos^2\left(\frac{A}{2}\right) + b \cos^2\left(\frac{B}{2}\right) + c \cos^2\left(\frac{C}{2}\right)}{a + b + c} \right) \) is \( \boxed{360} \).
Promotional Banner

Topper's Solved these Questions

  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise PROPERTIES AND SOLUTIONS OF TRIANGLES EXERCISE 6 : SINGLE INTEGER ANSWER TYPE QUESTIONS|1 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Subjective Type Questions)|21 Videos
  • PROPERTIES AND SOLUTION OF TRIANGLES

    ARIHANT MATHS ENGLISH|Exercise PROPERTIES AND SOLUTIONS OF TRIANGLES EXERCISE 5: MATCHING TYPE QUESTIONS|3 Videos
  • PRODUCT OF VECTORS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|51 Videos
  • SEQUENCES AND SERIES

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|38 Videos

Similar Questions

Explore conceptually related problems

The maximum value of cos^(2)A+cos^(2)B-cos^(2)C, is

In DeltaABC, the value of c cos (A-theta )+a cos (C+theta)=

In any DeltaABC, then minimum value of 2020sum(sqrt((sinA)))/((sqrt((sinB))+sqrt((sinC))-sqrt((sinA))) must be

In a DeltaABC , sum (b + c) cos A=

In any DeltaABC, sum (b - c) cot A/2 =

In a cyclic quadrilateral ABCD, the value of 2+sum cos A cos B, is

In DeltaABC , a=7, b=5 and c=8, then find the value of cos2B.

In a DeltaABC, a ^(2) cos 2B+b^(2) cos 2A+2ab cos (A-B)=

In DeltaABC, a = 3, b = 5, c = 6 , find the value of : cos (A/2)

In DeltaABC , if a=6, b=8, c=10, evaluate cos2A.