Home
Class 12
MATHS
A point P is taken on 'L' such that 2/(O...

A point P is taken on 'L' such that `2/(OP) = 1/(OA) +1/(OB)` , then the locus of P is

A

`(y-x)^(2)=32`

B

`(y-x)^(2)=64`

C

`(y-x)^(2)=80`

D

`(y-x)^(2)=100`

Text Solution

Verified by Experts

Promotional Banner

Topper's Solved these Questions

  • THE STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|16 Videos
  • THE STRAIGHT LINES

    ARIHANT MATHS ENGLISH|Exercise Example|3 Videos
  • SETS, RELATIONS AND FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|12 Videos
  • THEORY OF EQUATIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|35 Videos

Similar Questions

Explore conceptually related problems

A variable line L is drawn through O (0,0) to meet the lines L 1 ​ :y−x−10=0 and L 2 ​ :y−x−20=0 at the points A and B respectively. A point P is taken on L such that OP 2 ​ = OA 1 ​ + OB 1 ​ and P,A,B lies on same side of origin O. The locus of P is

A variable straight line is drawn from a fixed point O meeting a fixed circle in P and point Q is taken on this line such that OP.OQ is constant ,then locus of Q is

A straight lien is drawn from a fixed point O metting a fixed straight line P . A point Q is taken on the line OP such that OP.OQ is constant. Show that the locus of Q is a circle.

A straight line is drawn from a fixed point O meeting a fixed straight line in P . A point Q is taken on the line OP such that OP.OQ is constant. Show that the locus of Q is a circle.

A(2,3) , B (1,5), C(-1,2) are the three points . If P is a point such that PA^(2)+PB^(2)=2PC^2 , then find locus of P.

If P is any point on the plane l x+m y+n z=pa n dQ is a point on the line O P such that O P.O Q=p^2 , then find the locus of the point Qdot

If P is any point on the plane l x+m y+n z=pa n dQ is a point on the line O P such that O PdotO Q=p^2 , then find the locus of the point Qdot

If P (z) is a variable point in the complex plane such that IM (-1/z)=1/4 , then the value of the perimeter of the locus of P (z) is (use pi=3.14 )

Let the tangents to the parabola y^(2)=4ax drawn from point P have slope m_(1) and m_(2) . If m_(1)m_(2)=2 , then the locus of point P is

A (a,0) , B (-a,0) are two points . If a point P moves such that anglePAB - anglePBA = pi//2 then find the locus of P.