Home
Class 12
MATHS
Find the centre and radius of the circle...

Find the centre and radius of the circle `2x^(2)+2y^(2)=3x-5y+7`

Text Solution

AI Generated Solution

The correct Answer is:
To find the center and radius of the circle given by the equation \(2x^2 + 2y^2 = 3x - 5y + 7\), we will follow these steps: ### Step 1: Rearrange the equation First, we need to rearrange the equation to bring all terms to one side: \[ 2x^2 + 2y^2 - 3x + 5y - 7 = 0 \] ### Step 2: Divide by 2 Next, we divide the entire equation by 2 to simplify it: \[ x^2 + y^2 - \frac{3}{2}x + \frac{5}{2}y - \frac{7}{2} = 0 \] ### Step 3: Group the terms Now, we will group the \(x\) and \(y\) terms: \[ x^2 - \frac{3}{2}x + y^2 + \frac{5}{2}y = \frac{7}{2} \] ### Step 4: Complete the square for \(x\) To complete the square for the \(x\) terms: 1. Take the coefficient of \(x\) which is \(-\frac{3}{2}\), halve it to get \(-\frac{3}{4}\), and square it to get \(\frac{9}{16}\). 2. Add and subtract \(\frac{9}{16}\): \[ \left(x - \frac{3}{4}\right)^2 - \frac{9}{16} \] ### Step 5: Complete the square for \(y\) Now, for the \(y\) terms: 1. Take the coefficient of \(y\) which is \(\frac{5}{2}\), halve it to get \(\frac{5}{4}\), and square it to get \(\frac{25}{16}\). 2. Add and subtract \(\frac{25}{16}\): \[ \left(y + \frac{5}{4}\right)^2 - \frac{25}{16} \] ### Step 6: Substitute back into the equation Substituting back into the equation gives: \[ \left(x - \frac{3}{4}\right)^2 - \frac{9}{16} + \left(y + \frac{5}{4}\right)^2 - \frac{25}{16} = \frac{7}{2} \] ### Step 7: Combine constants Combine the constant terms: \[ -\frac{9}{16} - \frac{25}{16} = -\frac{34}{16} = -\frac{17}{8} \] So, we have: \[ \left(x - \frac{3}{4}\right)^2 + \left(y + \frac{5}{4}\right)^2 = \frac{7}{2} + \frac{17}{8} \] Finding a common denominator (which is 8): \[ \frac{7}{2} = \frac{28}{8} \] Thus: \[ \frac{28}{8} + \frac{17}{8} = \frac{45}{8} \] ### Step 8: Final equation of the circle Now, we can write the equation of the circle as: \[ \left(x - \frac{3}{4}\right)^2 + \left(y + \frac{5}{4}\right)^2 = \frac{45}{8} \] ### Step 9: Identify the center and radius From the standard form \((x - h)^2 + (y - k)^2 = r^2\): - The center \((h, k)\) is \(\left(\frac{3}{4}, -\frac{5}{4}\right)\) - The radius \(r\) is \(\sqrt{\frac{45}{8}} = \frac{3\sqrt{5}}{4}\) ### Final Answer - **Center**: \(\left(\frac{3}{4}, -\frac{5}{4}\right)\) - **Radius**: \(\frac{3\sqrt{5}}{4}\)
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos

Similar Questions

Explore conceptually related problems

Find the centre and radius of the circles 2x^2+2y^2-x=0

Find the centre and radius of the circle 2x^(2) + 2y^(2) - x = 0

Find the centre and radius of the circle x^(2) + y^(2) + 6x -10y -2 =0

Find the centre and radius of the circle (x+2)^(2)+(y+3)^(2)=5

Find the centre and the radius of the circles 3x^(2) + 3y^(2) - 8x - 10y + 3 = 0

Find the centre and radius of the circle 3x^(2) +3y^(2) - 6x +9y - 8 =0 .

Find the centre and radius of the circle 3x^(2)+ 3y^(2) - 6x + 4y - 4 = 0

Find the centre and radius of the circle 4x^(2) + 4y^(2) + 16y -4x = 19.

Find the centre and radius of the circle x^(2) + y^(2) - 6x + 4y - 12 =0 .

Find'the centre and radius of the circle (i) x^(2) +y^(2) + 4x - 1 = 0 (ii) 2 x^(2) + 2y^(2) = 3x - 5y + 7