Home
Class 12
MATHS
If the parametric of form of a circle is...

If the parametric of form of a circle is given by
(a) `x=-4+5costhetaandy=-3+5sintheta`
(b) `x=acosalpha+bsinalphaandy=asinalpha-bcosalpha` find its cartesian form.

Text Solution

AI Generated Solution

The correct Answer is:
To convert the given parametric equations of a circle into Cartesian form, we will follow a systematic approach for both parts of the question. ### Part (a) Given the parametric equations: 1. \( x = -4 + 5 \cos \theta \) 2. \( y = -3 + 5 \sin \theta \) **Step 1: Rearranging the equations** Rearranging the equation for \(x\): \[ x + 4 = 5 \cos \theta \] Rearranging the equation for \(y\): \[ y + 3 = 5 \sin \theta \] **Step 2: Squaring both equations** Now, square both sides of the rearranged equations: \[ (x + 4)^2 = (5 \cos \theta)^2 \quad \Rightarrow \quad (x + 4)^2 = 25 \cos^2 \theta \] \[ (y + 3)^2 = (5 \sin \theta)^2 \quad \Rightarrow \quad (y + 3)^2 = 25 \sin^2 \theta \] **Step 3: Expanding the squared equations** Expanding both equations: \[ x^2 + 8x + 16 = 25 \cos^2 \theta \quad \text{(1)} \] \[ y^2 + 6y + 9 = 25 \sin^2 \theta \quad \text{(2)} \] **Step 4: Adding the equations** Now, add equations (1) and (2): \[ (x^2 + 8x + 16) + (y^2 + 6y + 9) = 25 \cos^2 \theta + 25 \sin^2 \theta \] Using the identity \( \cos^2 \theta + \sin^2 \theta = 1 \): \[ x^2 + y^2 + 8x + 6y + 25 = 25 \] **Step 5: Simplifying the equation** Simplifying the equation: \[ x^2 + y^2 + 8x + 6y = 0 \] This is the Cartesian form for part (a). ### Part (b) Given the parametric equations: 1. \( x = a \cos \alpha + b \sin \alpha \) 2. \( y = a \sin \alpha - b \cos \alpha \) **Step 1: Squaring both equations** Square both sides of the equations: \[ x^2 = (a \cos \alpha + b \sin \alpha)^2 \quad \Rightarrow \quad x^2 = a^2 \cos^2 \alpha + b^2 \sin^2 \alpha + 2ab \sin \alpha \cos \alpha \quad \text{(3)} \] \[ y^2 = (a \sin \alpha - b \cos \alpha)^2 \quad \Rightarrow \quad y^2 = a^2 \sin^2 \alpha + b^2 \cos^2 \alpha - 2ab \sin \alpha \cos \alpha \quad \text{(4)} \] **Step 2: Adding the equations** Now, add equations (3) and (4): \[ x^2 + y^2 = (a^2 \cos^2 \alpha + b^2 \sin^2 \alpha + 2ab \sin \alpha \cos \alpha) + (a^2 \sin^2 \alpha + b^2 \cos^2 \alpha - 2ab \sin \alpha \cos \alpha) \] **Step 3: Simplifying the equation** Combine like terms: \[ x^2 + y^2 = a^2 (\cos^2 \alpha + \sin^2 \alpha) + b^2 (\sin^2 \alpha + \cos^2 \alpha) \] Using the identity \( \cos^2 \alpha + \sin^2 \alpha = 1 \): \[ x^2 + y^2 = a^2 + b^2 \] This is the Cartesian form for part (b). ### Summary of Results - For part (a): \( x^2 + y^2 + 8x + 6y = 0 \) - For part (b): \( x^2 + y^2 = a^2 + b^2 \)
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos

Similar Questions

Explore conceptually related problems

Find the parametric equations of that circles : 3x^2 + 3y^2 =4

Find the parametric equation of the circles : x^2 + y^2 - 2x+4y-4=0

Find the parametric equation of the circles : x^2 + y^2 + 2x - 4y - 1 =0

Find the parametric form of the equation of the circle x^2+y^2+p x+p y=0.

Find the parametric form of the equation of the circle x^2+y^2+p x+p y=0.

Find the parametric equations of that circles : 2x^2 + 2y^2 - 5x - 7y-3=0

Find the parametric equation of the circles : 3x^2 + 3y^2 + 4x-6y - 4 = 0

Find the parametric representation of the circle x^(2) +y^(2) - 2 x - 4 y - 4 = 0

Find the Cartesian equation of the curves whose parametric equation are : x=5 cos theta, y = 5 sin theta

Find the cartesian equation of the curve whose parametric equations are : x=4"cos"theta, y=3"sin"theta