Home
Class 12
MATHS
Prove that the line lx+my+n=0 toches the...

Prove that the line lx+my+n=0 toches the circle `(x-a)^(2)+(y-b)^(2)=r^(2)` if `(al+bm+n)^(2)=r^(2)(l^(2)+m^(2))`

Text Solution

AI Generated Solution

The correct Answer is:
To prove that the line \( lx + my + n = 0 \) touches the circle \( (x-a)^2 + (y-b)^2 = r^2 \) if \( (al + bm + n)^2 = r^2(l^2 + m^2) \), we will follow these steps: ### Step 1: Identify the Circle and the Line We have the equation of the circle: \[ (x - a)^2 + (y - b)^2 = r^2 \] This circle has its center at \( (a, b) \) and radius \( r \). The line is given by: \[ lx + my + n = 0 \] ### Step 2: Calculate the Perpendicular Distance from the Center of the Circle to the Line The formula for the perpendicular distance \( d \) from a point \( (x_0, y_0) \) to the line \( Ax + By + C = 0 \) is: \[ d = \frac{|Ax_0 + By_0 + C|}{\sqrt{A^2 + B^2}} \] In our case, the coefficients are: - \( A = l \) - \( B = m \) - \( C = n \) The center of the circle is \( (a, b) \). Thus, the distance \( d \) from the center \( (a, b) \) to the line \( lx + my + n = 0 \) is: \[ d = \frac{|la + mb + n|}{\sqrt{l^2 + m^2}} \] ### Step 3: Set the Distance Equal to the Radius Since the line is a tangent to the circle, the distance from the center of the circle to the line must equal the radius \( r \): \[ \frac{|la + mb + n|}{\sqrt{l^2 + m^2}} = r \] ### Step 4: Square Both Sides To eliminate the square root and the absolute value, we square both sides: \[ \left( \frac{la + mb + n}{\sqrt{l^2 + m^2}} \right)^2 = r^2 \] This simplifies to: \[ \frac{(la + mb + n)^2}{l^2 + m^2} = r^2 \] ### Step 5: Rearranging the Equation Multiplying both sides by \( l^2 + m^2 \) gives: \[ (la + mb + n)^2 = r^2(l^2 + m^2) \] ### Conclusion Thus, we have shown that the line \( lx + my + n = 0 \) touches the circle \( (x-a)^2 + (y-b)^2 = r^2 \) if and only if: \[ (al + bm + n)^2 = r^2(l^2 + m^2) \]
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos

Similar Questions

Explore conceptually related problems

If the line lx+my +n=0 touches the ellipse (x^(2))/(a^(2))+(y^(2))/(b^(2))=1 then

The locus of th point (l,m). If the line lx+my=1 touches the circle x^(2)+y^(2)=a^(2) is

If S-=x^(2)+y^(2)+2gx+2fy+c=0 represents a circle then show that the straight line lx+my+n=0 (i) touches the circle S=0 if g^(2)+f^(2)-c=(gl+mf-n)^(2)/(l^(2)+m^(2)) (ii) meets the circle S=0 in two points if g^(2)+f^(2)-cgt((gl+mf-n)^(2))/(l^(2)+m^(2)) (iii) will not meet the circle if g^(2)+f^(2)-clt((gl+mf-n)^(2))/(l^(2)+m^(2))

Find the condition, that the line lx + my + n = 0 may be a tangent to the circle (x - h)^(2) + (y - k)^(2) = r^(2) .

If the line lx+my+n=0 touches the hyperbola (x^(2))/(a^(2))-(y^(2))/(b^(2))=1 . Then

Show that the line lx + my = 1 will touch the ellipse (x ^(2))/( a ^(2)) + (y ^(2))/(b ^(2)) =1 if a ^(2) l ^(2) + b ^(2)m ^(2) = 1.

Prove that the line x/l+y/m=1 touches the parabola y^2=4a(x+b) , if m^2(l+b)+al^2=0 .

If the line l x+m y+n=0 touches the circle x^2+y^2=a^2 , then prove that (l^2+m^2)a^2=n^2dot

The line lx+my=n is a normal to the ellipse x^(2)/a^(2)+y^(2)/b^(2)=1

If the line lx+my+n=0 is tangent to the circle x^(2)+y^(2)=a^(2) , then find the condition.