Home
Class 12
MATHS
Show that the line (x-2)costheta+(y-2)si...

Show that the line `(x-2)costheta+(y-2)sintheta=1` touches a circle for all values of `theta` .Find the circle.

Text Solution

AI Generated Solution

The correct Answer is:
To show that the line \((x-2)\cos\theta + (y-2)\sin\theta = 1\) touches a circle for all values of \(\theta\) and to find the equation of that circle, we can follow these steps: ### Step 1: Rewrite the given line equation The given line equation is: \[ (x-2)\cos\theta + (y-2)\sin\theta = 1 \] ### Step 2: Rearranging the equation We can rearrange this equation to express it in a standard form: \[ x\cos\theta + y\sin\theta - 2\cos\theta - 2\sin\theta = 1 \] This can be written as: \[ x\cos\theta + y\sin\theta = 1 + 2\cos\theta + 2\sin\theta \] ### Step 3: Use the identity \(\cos^2\theta + \sin^2\theta = 1\) We know that \(\cos^2\theta + \sin^2\theta = 1\). We can use this identity to relate the terms involving \(\theta\). ### Step 4: Set up the equations From the rearranged equation, we can set: \[ x - 2\cos\theta = \cos^2\theta \quad \text{(1)} \] \[ y - 2\sin\theta = \sin^2\theta \quad \text{(2)} \] ### Step 5: Square and add the equations Now, we square both equations (1) and (2) and add them: \[ (x - 2\cos\theta)^2 + (y - 2\sin\theta)^2 = \cos^4\theta + \sin^4\theta \] ### Step 6: Simplify the left-hand side Expanding the left-hand side: \[ (x^2 - 4x\cos\theta + 4\cos^2\theta) + (y^2 - 4y\sin\theta + 4\sin^2\theta) \] This gives us: \[ x^2 + y^2 - 4x\cos\theta - 4y\sin\theta + 4(\cos^2\theta + \sin^2\theta) \] Using \(\cos^2\theta + \sin^2\theta = 1\), we can simplify this to: \[ x^2 + y^2 - 4x\cos\theta - 4y\sin\theta + 4 \] ### Step 7: Set the right-hand side The right-hand side can be simplified using the identity for \(\cos^4\theta + \sin^4\theta\): \[ \cos^4\theta + \sin^4\theta = (\cos^2\theta + \sin^2\theta)^2 - 2\cos^2\theta\sin^2\theta = 1 - 2\cos^2\theta\sin^2\theta \] ### Step 8: Combine and find the circle Now we have: \[ x^2 + y^2 - 4x\cos\theta - 4y\sin\theta + 4 = 1 - 2\cos^2\theta\sin^2\theta \] This implies that the left-hand side represents a circle centered at \((2\cos\theta, 2\sin\theta)\) with a radius that depends on \(\theta\). ### Final Circle Equation The equation of the circle can be expressed as: \[ (x - 2\cos\theta)^2 + (y - 2\sin\theta)^2 = r^2 \] where \(r^2 = 1 - 2\cos^2\theta\sin^2\theta\). ### Conclusion Thus, we have shown that the line touches a circle for all values of \(\theta\) and the center of the circle is \((2\cos\theta, 2\sin\theta)\). ---
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos

Similar Questions

Explore conceptually related problems

Show that the point (x, y) , where x=5 cos theta, y=-3+5 sin theta , lies on a circle for all values of theta

Show that the point (x, y) , where x=a+r cos theta, y = b + r sin theta , lies on a circle for all values of theta .

If sintheta+ costheta=1 , then find the general value of theta .

A line is tangent to a circle if the length of perpendicular from the centre of the circle to the line is equal to the radius of the circle. For all values of theta the lines (x-3) cos theta + (y-4) sin theta = 1 touch the circle having radius. (A) 2 (B) 1 (C) 5 (D) none of these

Find maximum and minium value of 5costheta+3sintheta(theta+pi/6) for all real values of theta .

If sintheta+costheta=1 , then the value of sin2theta is

If costheta+sintheta=sqrt(2)costheta ,then find the value of (costheta-sintheta)/(sintheta) .

Prove that the line y=m(x-1)+3sqrt(1+m^(2))-2 touches the circle x^(2)+y^(2)-2x+4y-4=0 for all real values of m.

If sintheta +costheta =1 , then the value of sin2theta is equal to

A value of theta satifying 4costheta sintheta - 2sintheta =0 is