Home
Class 12
MATHS
Two circles of radii a and b touching ea...

Two circles of radii `a and b` touching each other externally, are inscribed in the area bounded by `y=sqrt(1-x^2)` and the x-axis. If `b=1/2,` then `a` is equal to (a) `1/4` (b) `1/8` (c) `1/2` (d) `1/(sqrt(2))`

A

`(x-2)(x-8)+(y-4)(x-16)=0`

B

`(1)/(8)`

C

`(1)/(2)`

D

`(1)/(sqrt2)`

Text Solution

Verified by Experts

The correct Answer is:
`a=(1)/(4)`
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos

Similar Questions

Explore conceptually related problems

Two circles of radii aa n db touching each other externally, are inscribed in the area bounded by y=sqrt(1-x^2) and the x-axis. If b=1/2, then a is equal to 1/4 (b) 1/8 (c) 1/2 (d) 1/(sqrt(2))

The value of (lim)_(nvecoo)(tan^(-1)x))) is equal to -1 (b) pi/2 (c) -1/(sqrt(2)) (d) 1/(sqrt(2))

If y="sec"(tan^(-1)x), then (dy)/(dx) at x=1 is equal to: 1/(sqrt(2)) (b) 1/2 (c) 1 (d) sqrt(2)

If y="sec"(tan^(-1)x), then (dy)/(dx) at x=1 is equal to: 1/(sqrt(2)) (b) 1/2 (c) 1 (d) sqrt(2)

If x=sqrt(5)+\ 2, then x-1/x equals (a) 2sqrt(5) (b) 4 (c) 2 (d) sqrt(5)

If the third term in expansion of (1+x^(log_2x))^5 is 2560 then x is equal to (a) 2sqrt2 (b) 1/8 (c) 1/4 (d) 4sqrt2

If the third term in expansion of (1+x^(log_2x))^5 is 2560 then x is equal to (a) 2sqrt2 (b) 1/8 (c) 1/4 (d) 4sqrt2

If 3tan^(-1)(1/(2+sqrt(3)))-tan^(-1)1/x=tan^(-1)1/3, then x is equal to 1 (b) 2 (c) 3 (d) sqrt(2)

If a curve y =a sqrtx+bx passes through point (1,2) and the area bounded by curve, line x=4 and x-axis is 8, then : (a) a=3 (b) b=3 (c) a=-1 (d) b=-1

If tan^(-1)x+2cot^(-1)x=(2pi)/3, then x , is equal to (a) (sqrt(3)-1)/(sqrt(3)+1) (b) 3 (c) sqrt(3) (d) sqrt(2)