Home
Class 12
MATHS
Let xa n dy be real variables satisfying...

Let `xa n dy` be real variables satisfying `x^2+y^2+8x-10 y-40=0` . Let `a=max{sqrt((x+2)^2+(y-3)^2)}` and `b=min{sqrt((x+2)^2+(y-3)^2)}` . Then (a)`a+b=18` (b) `a+b=sqrt(2)` (c) `a-b=4sqrt(2)` (d) `adotb=73`

A

a+b=18

B

`a-b=4sqrt2`

C

`a+b=4sqrt2`

D

a.b=73

Text Solution

Verified by Experts

The correct Answer is:
`:.a+b=18,a-b=4sqrt2,ab=73`
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos

Similar Questions

Explore conceptually related problems

Let x, y be real variable satisfying x^(2) + y^(2) + 8x - 10y - 59 = 0 Let a = max {(x-3)^(2) + (y-4)^(2) and b = min {(x-3)^(2) + (y-4)^(2)) , then a + b + 2010 is ______ .

If a="max"{(x+2)^(2)+(y-3)^(2)} and b="min"{(x+2)^(2)+(y-3)^(2)} where x, y satisfying x^(2)+y^(2)+8x-10y-40=0 then :

min[(x_1-x_2)^2+(5+sqrt(1-x_1^2)-sqrt(4x_2))^2],AAx_1,x_2 in R , is (a) 4sqrt(5)-1 (b) 3-2sqrt(2) (c) sqrt(5)+1 (d) sqrt(5)-1

The slopes of the common tangents of the ellipse (x^2)/4+(y^2)/1=1 and the circle x^2+y^2=3 are +-1 (b) +-sqrt(2) (c) +-sqrt(3) (d) none of these

Length of the latus rectum of the parabola sqrt(x) +sqrt(y) = sqrt(a) is (a) a sqrt(2) (b) (a)/(sqrt(2)) (c) a (d) 2a

If y=sqrt(x)+1/(sqrt(x)) , then (dy)/(dx) \ at \ x=1 is a. 1 b. 1/2 c. 1/(sqrt(2)) d. 0

If y={x+sqrt(x^2+a^2)}^n , then prove that (dy)/(dx)=(n y)/(sqrt(x^2+a^2)) .

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (a) (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (c) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))

If y=(x+sqrt(x^2+a^2))^n ,t h e n(dy)/(dx) is (n y)/(sqrt(x^2+a^2)) (b) -(n y)/(sqrt(x^2+a^2)) (n x)/(sqrt(x^2+a^2)) (d) -(n x)/(sqrt(x^2+a^2))