Home
Class 12
MATHS
From the point P(sqrt(2),sqrt(6)) , tang...

From the point `P(sqrt(2),sqrt(6))` , tangents `P Aa n dP B` are drawn to the circle `x^2+y^2=4` Statement 1 :The area of quadrilateral `O A P B(O` being the origin) is 4. Statement 2 : The area of square is `a^2,` where `a` is the length of side.

A

Statement I is true, Statement II is true, Statement II is a correct explanation for Statement I

B

Statement I is true, Statement II is true, Statement II is not a correct explanation for Statement I

C

Statement I is true, Statement II is false

D

Statement I is false, Statement II is true

Text Solution

Verified by Experts

The correct Answer is:
`:.` Both statements are true and statement II is correct explanation of statement. I
Promotional Banner

Topper's Solved these Questions

  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|18 Videos
  • CIRCLE

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|17 Videos
  • BIONOMIAL THEOREM

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|21 Videos
  • COMPLEX NUMBERS

    ARIHANT MATHS ENGLISH|Exercise Complex Number Exercise 8|2 Videos

Similar Questions

Explore conceptually related problems

From the point P(3, 4) tangents PA and PB are drawn to the circle x^(2)+y^(2)+4x+6y-12=0 . The area of Delta PAB in square units, is

Two tangents to the circle x^2 +y^2=4 at the points A and B meet at P(-4,0) , The area of the quadrilateral PAOB , where O is the origin, is

From a point P , two tangents P A and P B are drawn to a circle with centre O . If O P= diameter of the circle, show that /_\ A P B is equilateral.

From point P(4,0) tangents PA and PB are drawn to the circle S: x^2+y^2=4 . If point Q lies on the circle, then maximum area of triangleQAB is- (1) 2sqrt3 (2) 3sqrt3 (3) 4sqrt3 A) 9

If from a point P , tangents P Qa n dP R are drawn to the ellipse (x^2)/2+y^2=1 so that the equation of Q R is x+3y=1, then find the coordinates of Pdot

Tangents PA and PB are drawn to x^(2) + y^(2) = 4 from the point P(3, 0) . Area of triangle PAB is equal to:-

Tangents P Aa n dP B are drawn to x^2+y^2=a^2 from the point P(x_1, y_1)dot Then find the equation of the circumcircle of triangle P A Bdot

Two tangents P Aa n dP B are drawn from an external point P to a circle with centre Odot Prove that A O B P is a cyclic quadrilateral.

Two tangent segments P A and P B are drawn to a circle with centre O such that /_A P B=120^circ . Prove that O P=2\ A P .

From a pt A common tangents are drawn to a circle x^2 +y^2 = a^2/2 and y^2 = 4ax . Find the area of the quadrilateral formed by common tangents, chord of contact of circle and chord of contact of parabola.