Home
Class 12
MATHS
If (d)/(dx)[ x^(n+1)+c]=(n+1)x^(n), then...

If `(d)/(dx)[ x^(n+1)+c]=(n+1)x^(n)`, then find `int x^(n)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To solve the problem, we start with the given differentiation: \[ \frac{d}{dx}[x^{n+1} + c] = (n+1)x^n \] We want to find the integral: \[ \int x^n \, dx \] ### Step-by-Step Solution: 1. **Integrate Both Sides**: We will integrate both sides of the given equation with respect to \(x\). \[ \int \frac{d}{dx}[x^{n+1} + c] \, dx = \int (n+1)x^n \, dx \] 2. **Apply the Fundamental Theorem of Calculus**: The left side simplifies to: \[ x^{n+1} + c \] The right side can be integrated as follows: \[ \int (n+1)x^n \, dx = (n+1) \int x^n \, dx \] 3. **Rearranging the Equation**: Now we have: \[ x^{n+1} + c = (n+1) \int x^n \, dx \] 4. **Isolate the Integral**: To find \(\int x^n \, dx\), we rearrange the equation: \[ \int x^n \, dx = \frac{x^{n+1} + c}{n+1} \] 5. **Final Result**: We can express the constant \(c\) as a new constant \(C\) (the integration constant): \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \] ### Final Answer: \[ \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If (d)/(dx) (sin x+c)=cos x , then find int cos x dx .

Evaluate: (d)/(dx)((1)/(x^(3)))

If int(dx)/(x^2(x^n+1)^((n-1)/n))=-(f(x))^(1/n)+C then f(x) is (A) 1+x^n (B) 1+x^-n (C) x^n+x^-n (D) x^n-x^-n

d/dx(x^n.logx)

Evaluate: (d)/(dx)(x^(1//5))

Evaluate: (d)/(dx)(x^(1//2))

Evaluate: (d)/(dx)((1)/(x))

The value of ("^n C_0)/n + ("^nC_1)/(n+1) + ("^nC_2)/(n+2) +....+ ("^nC_ n)/(2n) is equal to a. int_0^1x^(n-1)(1-x)^n dx b. int_1^2x^n(x-1)^(n-1)dx c. int_1^2x^(n-1)(1+x)^n dx d. int_0^1(1-x)^(n-1)dx

If d/dx (ϕ(x))=f(x) , then int_(1)^(2) f(x) dx is ______

Using mathematical induction prove that d/(dx)(x^n)=n x^(n-1) for all positive integers n.