Home
Class 12
MATHS
Evaluate int (x^(2))/(x^(2)+5)dx...

Evaluate
`int (x^(2))/(x^(2)+5)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{x^2}{x^2 + 5} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start by rewriting the integrand: \[ \frac{x^2}{x^2 + 5} = \frac{x^2 + 5 - 5}{x^2 + 5} = \frac{x^2 + 5}{x^2 + 5} - \frac{5}{x^2 + 5} = 1 - \frac{5}{x^2 + 5} \] Thus, we can express the integral as: \[ I = \int \left( 1 - \frac{5}{x^2 + 5} \right) \, dx \] ### Step 2: Split the integral Now we can split the integral into two parts: \[ I = \int 1 \, dx - 5 \int \frac{1}{x^2 + 5} \, dx \] ### Step 3: Integrate the first part The integral of 1 with respect to \( x \) is: \[ \int 1 \, dx = x \] ### Step 4: Integrate the second part Next, we need to evaluate the integral \( \int \frac{1}{x^2 + 5} \, dx \). We can rewrite \( 5 \) as \( \sqrt{5}^2 \): \[ \int \frac{1}{x^2 + 5} \, dx = \int \frac{1}{x^2 + (\sqrt{5})^2} \, dx \] Using the formula \( \int \frac{1}{x^2 + a^2} \, dx = \frac{1}{a} \tan^{-1} \left( \frac{x}{a} \right) + C \), where \( a = \sqrt{5} \): \[ \int \frac{1}{x^2 + 5} \, dx = \frac{1}{\sqrt{5}} \tan^{-1} \left( \frac{x}{\sqrt{5}} \right) + C \] ### Step 5: Combine the results Now, substituting back into our expression for \( I \): \[ I = x - 5 \left( \frac{1}{\sqrt{5}} \tan^{-1} \left( \frac{x}{\sqrt{5}} \right) \right) + C \] This simplifies to: \[ I = x - \frac{5}{\sqrt{5}} \tan^{-1} \left( \frac{x}{\sqrt{5}} \right) + C \] Since \( \frac{5}{\sqrt{5}} = \sqrt{5} \), we can write: \[ I = x - \sqrt{5} \tan^{-1} \left( \frac{x}{\sqrt{5}} \right) + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{x^2}{x^2 + 5} \, dx = x - \sqrt{5} \tan^{-1} \left( \frac{x}{\sqrt{5}} \right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(x^(2)+5)^(3)dx

Evaluate : int(2x+3)/(2x^(2)+6x+5)dx .

Evaluate: int(x^(2)-2x+5)dx

Evaluate: int(x^7)/((a^2-x^2)^5)dx

Evaluate: int(x^(2)-5x-1)dx

Evaluate : int(2x+7)/(x^(2)-x-2)dx

Evaluate: int(x^2+1)/(x^2-5x+6)dx

Evaluate int(x^2+x+5)/(3x+2)dx

Evaluate: int(x^2-2)/(x^5-x)\ dx

Evaluate int (x^(2)+5x-1)/(sqrt(x))dx