Home
Class 12
MATHS
Evaluate int 2^(log(4)x)dx...

Evaluate
`int 2^(log_(4)x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int 2^{\log_{4} x} \, dx \), we can follow these steps: ### Step 1: Rewrite the exponent using logarithmic identities We know that \( \log_{b} a = \frac{\log_{k} a}{\log_{k} b} \) for any base \( k \). Therefore, we can rewrite \( \log_{4} x \) in terms of base 2: \[ \log_{4} x = \frac{\log_{2} x}{\log_{2} 4} \] Since \( \log_{2} 4 = 2 \), we have: \[ \log_{4} x = \frac{\log_{2} x}{2} \] Thus, \[ 2^{\log_{4} x} = 2^{\frac{\log_{2} x}{2}} = (2^{\log_{2} x})^{\frac{1}{2}} = x^{\frac{1}{2}} = \sqrt{x} \] ### Step 2: Rewrite the integral Now, we can rewrite the integral as: \[ \int 2^{\log_{4} x} \, dx = \int \sqrt{x} \, dx \] ### Step 3: Integrate The integral of \( \sqrt{x} \) can be calculated as follows: \[ \int \sqrt{x} \, dx = \int x^{\frac{1}{2}} \, dx = \frac{x^{\frac{1}{2} + 1}}{\frac{1}{2} + 1} + C = \frac{x^{\frac{3}{2}}}{\frac{3}{2}} + C = \frac{2}{3} x^{\frac{3}{2}} + C \] ### Final Answer Thus, the evaluated integral is: \[ \int 2^{\log_{4} x} \, dx = \frac{2}{3} x^{\frac{3}{2}} + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int 5^(log _(e)x)dx

Evaluate int(log_(e)x)^(2)dx

Evaluate int(log_(e)x)^(2)dx

Evaluate: int(log(logx)/x)\ dx

Evaluate int(1+x^(2)log_(e)x)/(x+x^(2)log_(e)x)dx

Evaluate int (sin(log x))/(x)dx

Evaluate: int(log)_(10)x\ dx

int log_(e)(a^(x))dx=

Evaluate : int (e^("log x "))/(x) " dx "

Evaluate : int x^n log x dx.