Home
Class 12
MATHS
int((sqrt(x)+1)(x^2-sqrt(x)))/(xsqrt(x)+...

`int((sqrt(x)+1)(x^2-sqrt(x)))/(xsqrt(x)+x+sqrt(x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \frac{(\sqrt{x}+1)(x^2-\sqrt{x})}{x\sqrt{x}+x+\sqrt{x}} \, dx, \] we will follow these steps: ### Step 1: Simplify the Expression First, we will rewrite the integral in a more manageable form. We can factor out \(\sqrt{x}\) from both the numerator and the denominator. The numerator becomes: \[ (\sqrt{x}+1)(x^2-\sqrt{x}) = \sqrt{x}x^2 - x + x^2 - \sqrt{x} = x^{5/2} - \sqrt{x} + x^2 - \sqrt{x}. \] The denominator becomes: \[ x\sqrt{x}+x+\sqrt{x} = x^{3/2} + x + \sqrt{x}. \] ### Step 2: Factor Out Common Terms Now, we can factor out \(\sqrt{x}\) from the numerator and denominator: \[ \int \frac{\sqrt{x}(\sqrt{x}+1)(x^{3/2}-1)}{\sqrt{x}(x^{3/2}+x+\sqrt{x})} \, dx. \] This simplifies to: \[ \int \frac{(\sqrt{x}+1)(x^{3/2}-1)}{x^{3/2}+x+\sqrt{x}} \, dx. \] ### Step 3: Recognize the Form Notice that \(x^{3/2}-1\) can be factored as a difference of cubes: \[ x^{3/2}-1 = (\sqrt{x}-1)(x+\sqrt{x}+1). \] ### Step 4: Substitute and Simplify Now we can substitute this back into the integral: \[ \int \frac{(\sqrt{x}+1)(\sqrt{x}-1)(x+\sqrt{x}+1)}{x^{3/2}+x+\sqrt{x}} \, dx. \] The \(x+\sqrt{x}+1\) terms in the numerator and denominator cancel out: \[ \int (\sqrt{x}+1)(\sqrt{x}-1) \, dx. \] ### Step 5: Expand and Integrate Now we can expand the remaining expression: \[ \int (\sqrt{x}^2 - 1) \, dx = \int (x - 1) \, dx. \] ### Step 6: Perform the Integration Now we integrate: \[ \int (x - 1) \, dx = \frac{x^2}{2} - x + C. \] ### Final Result Thus, the final result of the integral is: \[ \frac{x^2}{2} - x + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If y= ((sqrt(x)+1)(x^(2)-sqrt(x)))/(xsqrt(x)+x+sqrt(x)), Prove that (dy)/(dx) = 1 .

int(tansqrt(x)sec^2sqrt(x))/(sqrt(x)) dx

int(1)/(sqrt(x)[sqrt(x)+1])dx

int1/(sqrt(x+1)+sqrt(x))dx

(7) int(1)/(sqrt(x+x sqrt(x)))dx

int sqrt((1+sqrt(x))/(1-sqrt(x))dx

int(sqrt (x)+1/sqrt (x))^2dx

Evaluate int(1)/(sqrt(x))(sqrt(x)+(1)/(sqrt(x)))^(2)dx

int1/(sqrt(x+1)+sqrt(x))\ dx

int( dx)/(sqrt(x+a)+sqrt(x+b))