Home
Class 12
MATHS
Evaluate int(1+2x^(2))/(x^(2)(1+x^(2)...

Evaluate
`int(1+2x^(2))/(x^(2)(1+x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{1 + 2x^2}{x^2(1 + x^2)} \, dx, \] we can follow these steps: ### Step 1: Simplify the integrand We start with the expression \[ \frac{1 + 2x^2}{x^2(1 + x^2)}. \] We can rewrite \(1 + 2x^2\) as \(1 + x^2 + x^2\). This allows us to break it down: \[ 1 + 2x^2 = (1 + x^2) + x^2. \] Now, we can express the integrand as: \[ \frac{(1 + x^2) + x^2}{x^2(1 + x^2)} = \frac{1 + x^2}{x^2(1 + x^2)} + \frac{x^2}{x^2(1 + x^2)}. \] ### Step 2: Separate the fractions This can be separated into two integrals: \[ \int \left( \frac{1 + x^2}{x^2(1 + x^2)} + \frac{x^2}{x^2(1 + x^2)} \right) \, dx = \int \frac{1}{x^2} \, dx + \int \frac{1}{1 + x^2} \, dx. \] ### Step 3: Evaluate the integrals Now we evaluate each integral separately. 1. For the first integral: \[ \int \frac{1}{x^2} \, dx = \int x^{-2} \, dx = -\frac{1}{x} + C_1. \] 2. For the second integral: \[ \int \frac{1}{1 + x^2} \, dx = \tan^{-1}(x) + C_2. \] ### Step 4: Combine the results Combining the results from both integrals, we have: \[ -\frac{1}{x} + \tan^{-1}(x) + C, \] where \(C = C_1 + C_2\) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \int \frac{1 + 2x^2}{x^2(1 + x^2)} \, dx = -\frac{1}{x} + \tan^{-1}(x) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(1-x^(2))/(1+x^(2))dx.

Evaluate int(x^(2)+x+1)/(x^(2)-1)dx

Evaluate: int(1-x+x^2)dx

Evaluate int(dx)/((1+x^(2))sqrt(1-x^(2))).

Evaluate: int_1^2x^2dx

Evaluate: int(x^2+x+1)/(x^2-x)dx

Evaluate: int(sqrt(1+x^2))/(1-x^2)dx

Evaluate: int(sqrt(1+x^2))/(1-x^2)dx

Evaluate: int(x^2+1)/(x^2-1)\ dx

Evaluate int(x^2-1)/(x^2+1)dx