Home
Class 12
MATHS
Evaluate int(x^(6)-1)/((x^(2)+1))dx...

Evaluate
`int(x^(6)-1)/((x^(2)+1))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{x^6 - 1}{x^2 + 1} \, dx, \] we will first perform polynomial long division on the integrand. ### Step 1: Polynomial Long Division We divide \(x^6 - 1\) by \(x^2 + 1\). 1. Divide the leading term: \(x^6 \div x^2 = x^4\). 2. Multiply \(x^4\) by \(x^2 + 1\): \[ x^4(x^2 + 1) = x^6 + x^4. \] 3. Subtract this from \(x^6 - 1\): \[ (x^6 - 1) - (x^6 + x^4) = -x^4 - 1. \] 4. Now, divide \(-x^4\) by \(x^2 + 1\): - Divide the leading term: \(-x^4 \div x^2 = -x^2\). - Multiply \(-x^2\) by \(x^2 + 1\): \[ -x^2(x^2 + 1) = -x^4 - x^2. \] - Subtract: \[ (-x^4 - 1) - (-x^4 - x^2) = x^2 - 1. \] 5. Now, divide \(x^2 - 1\) by \(x^2 + 1\): - Divide the leading term: \(x^2 \div x^2 = 1\). - Multiply \(1\) by \(x^2 + 1\): \[ 1(x^2 + 1) = x^2 + 1. \] - Subtract: \[ (x^2 - 1) - (x^2 + 1) = -2. \] So, we can express the integral as: \[ \int \frac{x^6 - 1}{x^2 + 1} \, dx = \int \left( x^4 - x^2 + 1 - \frac{2}{x^2 + 1} \right) \, dx. \] ### Step 2: Integrate Each Term Now we can integrate term by term: 1. \(\int x^4 \, dx = \frac{x^5}{5}\). 2. \(\int -x^2 \, dx = -\frac{x^3}{3}\). 3. \(\int 1 \, dx = x\). 4. \(\int -\frac{2}{x^2 + 1} \, dx = -2 \tan^{-1}(x)\). Putting it all together, we have: \[ \int \frac{x^6 - 1}{x^2 + 1} \, dx = \frac{x^5}{5} - \frac{x^3}{3} + x - 2 \tan^{-1}(x) + C, \] where \(C\) is the constant of integration. ### Final Answer Thus, the final result is: \[ \int \frac{x^6 - 1}{x^2 + 1} \, dx = \frac{x^5}{5} - \frac{x^3}{3} + x - 2 \tan^{-1}(x) + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(x^(2)+x+1)/(x^(2)-1)dx

Evaluate: int (x^(4) +1)/(x^(6) + 1)dx

Evaluate : int (x^(4)+1)/(x^(6)+1)" dx "

Evaluate: int(x^6)/(x-1)\ dx

Evaluate int\x^2(x-1)\dx

Evaluate int(x^2-x+1)\dx

Evaluate: int (x^2-1)/(( x+1) (x-2))dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2+1)/(x(x^2-1))dx

Evaluate: int(x^2+1)/(x(x^2-1))dx