Home
Class 12
MATHS
int((1-x^(- 2))/(x^(1//2)-x^(-1//2))-2/(...

`int((1-x^(- 2))/(x^(1//2)-x^(-1//2))-2/(x^(3//2))+(x^(- 2)-x)/(x^(1//2)-x^(-1//2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \[ \int \left( \frac{1 - x^{-2}}{x^{1/2} - x^{-1/2}} - \frac{2}{x^{3/2}} + \frac{x^{-2} - x}{x^{1/2} - x^{-1/2}} \right) dx, \] we will simplify the expression step by step. ### Step 1: Simplifying the Expression First, we notice that the denominator \( x^{1/2} - x^{-1/2} \) is common in the first and third terms. We can combine these fractions: \[ \frac{1 - x^{-2} + x^{-2} - x}{x^{1/2} - x^{-1/2}} - \frac{2}{x^{3/2}}. \] This simplifies to: \[ \frac{1 - x}{x^{1/2} - x^{-1/2}} - \frac{2}{x^{3/2}}. \] ### Step 2: Further Simplification Now, we can rewrite the denominator: \[ x^{1/2} - x^{-1/2} = \frac{x - 1}{x^{1/2}}. \] Thus, the expression becomes: \[ \frac{1 - x}{\frac{x - 1}{x^{1/2}}} - \frac{2}{x^{3/2}} = \frac{(1 - x) x^{1/2}}{x - 1} - \frac{2}{x^{3/2}}. \] Notice that \( 1 - x = -(x - 1) \), so we can rewrite the first term: \[ -\frac{(x - 1) x^{1/2}}{x - 1} - \frac{2}{x^{3/2}} = -x^{1/2} - \frac{2}{x^{3/2}}. \] ### Step 3: Combining Terms Now we have: \[ \int \left( -x^{1/2} - \frac{2}{x^{3/2}} \right) dx. \] ### Step 4: Integrating Each Term We can integrate each term separately: 1. For \(-x^{1/2}\): \[ \int -x^{1/2} \, dx = -\frac{2}{3} x^{3/2}. \] 2. For \(-\frac{2}{x^{3/2}}\): \[ \int -\frac{2}{x^{3/2}} \, dx = -2 \cdot \int x^{-3/2} \, dx = -2 \cdot \left(-\frac{2}{\sqrt{x}}\right) = \frac{4}{\sqrt{x}}. \] ### Step 5: Combining the Results Combining the results of the integrals, we get: \[ -\frac{2}{3} x^{3/2} + \frac{4}{\sqrt{x}} + C, \] where \( C \) is the constant of integration. ### Final Answer Thus, the final answer is: \[ \int \left( \frac{1 - x^{-2}}{x^{1/2} - x^{-1/2}} - \frac{2}{x^{3/2}} + \frac{x^{-2} - x}{x^{1/2} - x^{-1/2}} \right) dx = -\frac{2}{3} x^{3/2} + \frac{4}{\sqrt{x}} + C. \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int3x^(1//2)(1+x^(3//2))dx

int(x^(1/2)+2x^(1/2)+x^(3/2))dx =

int(sin^(- 1)x)/((1-x^2)^(1/2)) dx

int(x^(3)-x^(2)+x-1)/(x-1)dx

int(sin^(- 1)x)/((1-x^2)^(3/2))dx

int((x^(- 6)-64)/(4+2x^(- 1)+x^(- 2))*(x^2)/(4-4x^(- 1)+x^(- 2))-(4x^2(2x+1))/(1-2x))dx

int(2x-1)/(sqrt(x^(2)-x-1))dx

int(1+x^(1/2)+x^(2/3))/(1+x^(1/3))dx

int 1/((1-x^2)sqrt(1+x^2))dx

int_(-1)^(2) (x) /((x^(2)+1)^(2))dx