Home
Class 12
MATHS
Evaluate: int1/(cos(x-a)cos(x-b))\ dx...

Evaluate: `int1/(cos(x-a)cos(x-b))\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{1}{\cos(x-a) \cos(x-b)} \, dx \), we can follow these steps: ### Step-by-Step Solution: 1. **Multiply and Divide by a Trigonometric Constant**: We start by multiplying and dividing the integrand by \( \frac{1}{\sin(a-b)} \): \[ \int \frac{1}{\cos(x-a) \cos(x-b)} \, dx = \frac{1}{\sin(a-b)} \int \frac{\sin(a-b)}{\cos(x-a) \cos(x-b)} \, dx \] **Hint**: This step helps in transforming the integral into a more manageable form using trigonometric identities. 2. **Use the Sine Difference Identity**: We can express \( \sin(a-b) \) in terms of \( x \): \[ \sin(a-b) = \sin(x-b) \cos(x-a) - \cos(x-b) \sin(x-a) \] Substituting this into the integral gives: \[ \frac{1}{\sin(a-b)} \int \frac{\sin(x-b) \cos(x-a) - \cos(x-b) \sin(x-a)}{\cos(x-a) \cos(x-b)} \, dx \] **Hint**: Recognizing the sine difference identity helps in rewriting the integral in a more useful form. 3. **Separate the Integral**: Now we can separate the integral into two parts: \[ \frac{1}{\sin(a-b)} \left( \int \tan(x-b) \, dx - \int \tan(x-a) \, dx \right) \] **Hint**: Separating the integral allows us to integrate each term individually. 4. **Integrate Each Term**: The integral of \( \tan(x) \) is: \[ \int \tan(x) \, dx = -\ln|\cos(x)| + C \] Thus, we have: \[ \int \tan(x-b) \, dx = -\ln|\cos(x-b)| + C_1 \] \[ \int \tan(x-a) \, dx = -\ln|\cos(x-a)| + C_2 \] **Hint**: Remember the integral of \( \tan(x) \) is crucial for solving this problem. 5. **Combine the Results**: Substituting back, we get: \[ \frac{1}{\sin(a-b)} \left( -\ln|\cos(x-b)| + \ln|\cos(x-a)| \right) + C \] This simplifies to: \[ \frac{1}{\sin(a-b)} \ln \left| \frac{\cos(x-a)}{\cos(x-b)} \right| + C \] **Hint**: Combining logarithmic terms is a useful algebraic manipulation. ### Final Answer: Thus, the final result of the integral is: \[ \int \frac{1}{\cos(x-a) \cos(x-b)} \, dx = \frac{1}{\sin(a-b)} \ln \left| \frac{\cos(x-a)}{\cos(x-b)} \right| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(sin(x-a)cos(x-b))\ dx

Evaluate: int1/(cos3x-cosx)dx

Evaluate: int1/(cos3x-cosx)\ dx

Evaluate int1/(1+cos3x)dx

Evaluate : int1/(1+cos x)dx

Evaluate: int1/(sinx(2cos^2x-1))\ dx

Evaluate: (i) int1/(sqrt(1+cos2x))\ dx

Evaluate: (i) int1/(sqrt(1-cos2x))\ dx (ii) int1/(sqrt(1+cosx))\ dx

Find the indefinite integral int1/(cos(x-a)cos(x-b))dx .

Evaluate: int1/(sinx(2cos^2x-1)dx