Home
Class 12
MATHS
If f'(x)=x/2 + 2/x and f(1)=5/4, then fi...

If `f'(x)=x/2 + 2/x` and `f(1)=5/4`, then find `f(x)`.

Text Solution

AI Generated Solution

The correct Answer is:
To find the function \( f(x) \) given that \( f'(x) = \frac{x}{2} + \frac{2}{x} \) and \( f(1) = \frac{5}{4} \), we will follow these steps: ### Step 1: Integrate \( f'(x) \) We start with the derivative: \[ f'(x) = \frac{x}{2} + \frac{2}{x} \] To find \( f(x) \), we need to integrate \( f'(x) \): \[ f(x) = \int \left( \frac{x}{2} + \frac{2}{x} \right) dx \] ### Step 2: Perform the integration We can split the integral: \[ f(x) = \int \frac{x}{2} \, dx + \int \frac{2}{x} \, dx \] Calculating each integral: 1. For \( \int \frac{x}{2} \, dx \): \[ \int \frac{x}{2} \, dx = \frac{1}{2} \cdot \frac{x^2}{2} = \frac{x^2}{4} \] 2. For \( \int \frac{2}{x} \, dx \): \[ \int \frac{2}{x} \, dx = 2 \ln |x| \] Combining these results, we have: \[ f(x) = \frac{x^2}{4} + 2 \ln |x| + C \] ### Step 3: Use the initial condition to find \( C \) We know that \( f(1) = \frac{5}{4} \). So we substitute \( x = 1 \) into our function: \[ f(1) = \frac{1^2}{4} + 2 \ln |1| + C \] Since \( \ln |1| = 0 \), this simplifies to: \[ f(1) = \frac{1}{4} + C \] Setting this equal to \( \frac{5}{4} \): \[ \frac{1}{4} + C = \frac{5}{4} \] ### Step 4: Solve for \( C \) Subtract \( \frac{1}{4} \) from both sides: \[ C = \frac{5}{4} - \frac{1}{4} = \frac{4}{4} = 1 \] ### Step 5: Write the final function Substituting \( C \) back into our function: \[ f(x) = \frac{x^2}{4} + 2 \ln |x| + 1 \] Thus, the final answer is: \[ \boxed{f(x) = \frac{x^2}{4} + 2 \ln |x| + 1} \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

If f(x)=x^(2)-4 then find f'(2).

If f'(x) = 1/x + x^2 and f(1)=4/3 then find the value of f(x)

If f^(prime)(x)=3x^2-2/(x^3) and f(1)=0 , find f(x) .

If f^(prime)(x)=x-1/(x^2) and f(1)=1/2 , find f(x) .

If f^(prime)(x)=x-1/(x^2) and f(1)=1/2 , find f(x) .

Let f(x)=x^4-x^3 then find f '(2)

If g(x)=x^(2)+x-1 and g(f(x))=4x^(2)-10x+5 then find f((5)/(4))

If f: R->R is an odd function such that f(1+x)=1+f(x) and x^2f(1/x)=f(x),x!=0 then find f(x)dot

f(x)=x^(2) . Find f^(-1) .

If f(2)=4 and f^(prime)(2)=1 , then find (lim)_(x->2)(x\ f(2)-2f\ (x))/(x-2) .