Home
Class 12
MATHS
Evaluate int (sin(log x))/(x)dx...

Evaluate `int (sin(log x))/(x)dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{\sin(\log x)}{x} \, dx \), we can follow these steps: ### Step 1: Substitution Let \( t = \log x \). Then, we differentiate both sides with respect to \( x \): \[ \frac{dt}{dx} = \frac{1}{x} \implies dt = \frac{1}{x} \, dx \implies dx = x \, dt \] Since \( x = e^t \), we can substitute \( dx \) in terms of \( dt \). ### Step 2: Rewrite the Integral Now, substituting \( t \) into the integral, we have: \[ \int \frac{\sin(\log x)}{x} \, dx = \int \sin(t) \, dt \] ### Step 3: Integrate The integral of \( \sin(t) \) is: \[ \int \sin(t) \, dt = -\cos(t) + C \] where \( C \) is the constant of integration. ### Step 4: Back Substitute Now, we substitute back \( t = \log x \): \[ -\cos(t) + C = -\cos(\log x) + C \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{\sin(\log x)}{x} \, dx = -\cos(\log x) + C \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int ("cos (log x)")/(x) " dx "

Evaluate: int(sin("ln"x))/(x) dx

int(tan(1+log x))/(x) dx

Evaluate : int (e^("log x "))/(x) " dx "

Evaluate: int(log(1-x))/(1-x)\ dx

Evaluate : int(sin(x-a))/(sin(x+a))dx

Evaluate : int(sin(x-a))/(sin(x+a))dx

Evaluate : int ((1+"log"x)^(2))/(x)-" dx "

Evaluate: int(ln(lnx))/(xlnx)dx ,(x >0)

Evaluate int x log x dx .