Home
Class 12
MATHS
Evaluate int (e^(m tan^(-1)x))/(1+x^(2)...

Evaluate `int (e^(m tan^(-1)x))/(1+x^(2))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ \int \frac{e^{m \tan^{-1} x}}{1 + x^2} \, dx, \] we will use substitution. Let's go through the steps: ### Step 1: Substitution Let \( t = \tan^{-1} x \). Then, we differentiate to find \( dx \): \[ \frac{dt}{dx} = \frac{1}{1 + x^2} \implies dx = (1 + x^2) \, dt. \] ### Step 2: Rewrite the Integral Now, substitute \( t \) into the integral: \[ \int \frac{e^{m \tan^{-1} x}}{1 + x^2} \, dx = \int e^{mt} \cdot \frac{1 + x^2}{1 + x^2} \, dt = \int e^{mt} \, dt. \] ### Step 3: Integrate The integral of \( e^{mt} \) is: \[ \int e^{mt} \, dt = \frac{e^{mt}}{m} + C, \] where \( C \) is the constant of integration. ### Step 4: Substitute Back Now, we need to substitute back \( t = \tan^{-1} x \): \[ \frac{e^{m \tan^{-1} x}}{m} + C. \] ### Final Answer Thus, the evaluated integral is: \[ \int \frac{e^{m \tan^{-1} x}}{1 + x^2} \, dx = \frac{e^{m \tan^{-1} x}}{m} + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(e^tan^(-1)(x))/(1+x^2)\ dx

Evaluate: int (e^(m sin^(-1)x))/(sqrt(1-x^2))dx

Evaluate: int(e^(tan^(-1)x))/((1+x^2))[(sec^(-1)sqrt(1+x^2)+cos^(-1)((1-x^2)/(1+x^2))]dx,(x >0)dot

Evaluate inte^(a tan^-1x)/(1+x^2)dx

int e^(tan^(-1)x) ((1+x+x^2)/(1+x^2))dx

Evaluate: int(e^tan^((-1)x))/((1+x^2))[((sec^(-1)sqrt(1+x^2))^2+cos^(-1)((1-x^2)/(1+x^2))]dx(x >0)dot

Evaluate: int(sin(tan^(-1)x)/(1+x^2)dx )

Evaluate: int(tan^(-1)x)/(1+x^2)dx

Evaluate: inte^(tan^-1x)/(1+x^2)dx

Evaluate: int(x^2tan^(-1)x)/(1+x^2)\ dx