Home
Class 12
MATHS
Evaluate int x sin(4x^(2)+7 ) dx...

Evaluate `int x sin(4x^(2)+7 ) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int x \sin(4x^2 + 7) \, dx \), we will use substitution. Here are the steps: ### Step 1: Substitution Let \( t = 4x^2 + 7 \). ### Step 2: Differentiate Now, differentiate \( t \) with respect to \( x \): \[ \frac{dt}{dx} = 8x \implies dt = 8x \, dx \implies x \, dx = \frac{dt}{8} \] ### Step 3: Rewrite the Integral Substituting \( t \) and \( x \, dx \) into the integral, we have: \[ \int x \sin(4x^2 + 7) \, dx = \int \sin(t) \cdot \frac{dt}{8} \] ### Step 4: Factor Out the Constant We can factor out the constant \( \frac{1}{8} \): \[ = \frac{1}{8} \int \sin(t) \, dt \] ### Step 5: Integrate The integral of \( \sin(t) \) is: \[ \int \sin(t) \, dt = -\cos(t) + C \] Thus, \[ \frac{1}{8} \int \sin(t) \, dt = \frac{1}{8} (-\cos(t) + C) = -\frac{1}{8} \cos(t) + \frac{C}{8} \] ### Step 6: Substitute Back Now substitute back \( t = 4x^2 + 7 \): \[ = -\frac{1}{8} \cos(4x^2 + 7) + C \] ### Final Answer The final result is: \[ \int x \sin(4x^2 + 7) \, dx = -\frac{1}{8} \cos(4x^2 + 7) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate : int x " sin"^(2) " x dx "

Evaluate : int x " sin"^(2) " x dx "

Evaluate int 2 sin(x)dx .

Evaluate : int 1/x^2 sin^2 (1/x)dx

Evaluate : int"sin"^(2) " x dx "

Evaluate int sin 4x.e^(tan^(2)x)dx .

Evaluate : int (1)/(" sin"^(2) x " cos"^(2) x ") ") " dx "

Evaluate int\ x^7+sin2x\dx

Evaluate : int(2x+7)/(x^2 - x-2)dx

Evaluate : int(2x+7)/(x^(2)-x-2)dx