Home
Class 12
MATHS
Evaluate int cos x cos 2x cos 5x dx...

Evaluate `int cos x cos 2x cos 5x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \cos x \cos 2x \cos 5x \, dx \), we can follow these steps: ### Step 1: Multiply and Divide by 2 We start by multiplying and dividing the integral by 2: \[ \int \cos x \cos 2x \cos 5x \, dx = \frac{1}{2} \int 2 \cos x \cos 2x \cos 5x \, dx \] ### Step 2: Use the Cosine Product Identity Using the identity \( 2 \cos A \cos B = \cos(A + B) + \cos(A - B) \), we can rewrite \( 2 \cos x \cos 2x \): \[ 2 \cos x \cos 2x = \cos(3x) + \cos(-x) = \cos(3x) + \cos(x) \] Thus, we have: \[ \frac{1}{2} \int \left( \cos(3x) + \cos(x) \right) \cos(5x) \, dx \] ### Step 3: Expand the Integral Now, we can expand the integral: \[ \frac{1}{2} \int \left( \cos(3x) \cos(5x) + \cos(x) \cos(5x) \right) \, dx \] ### Step 4: Apply the Cosine Product Identity Again For each term, we apply the cosine product identity again. For \( \cos(3x) \cos(5x) \): \[ 2 \cos(3x) \cos(5x) = \cos(8x) + \cos(-2x) = \cos(8x) + \cos(2x) \] Thus, \[ \frac{1}{2} \int \left( \frac{1}{2} (\cos(8x) + \cos(2x)) + \cos(x) \cos(5x) \right) \, dx \] For \( \cos(x) \cos(5x) \): \[ 2 \cos(x) \cos(5x) = \cos(6x) + \cos(4x) \] So, we can rewrite the integral as: \[ \frac{1}{4} \int \left( \cos(8x) + \cos(2x) + \cos(6x) + \cos(4x) \right) \, dx \] ### Step 5: Integrate Each Term Now we integrate each cosine term: \[ \int \cos(kx) \, dx = \frac{1}{k} \sin(kx) + C \] Thus, we have: \[ \frac{1}{4} \left( \frac{1}{8} \sin(8x) + \frac{1}{2} \sin(2x) + \frac{1}{6} \sin(6x) + \frac{1}{4} \sin(4x) \right) + C \] ### Step 6: Combine the Results Finally, we combine the results: \[ = \frac{1}{32} \sin(8x) + \frac{1}{8} \sin(2x) + \frac{1}{24} \sin(6x) + \frac{1}{16} \sin(4x) + C \] ### Final Answer The evaluated integral is: \[ \int \cos x \cos 2x \cos 5x \, dx = \frac{1}{32} \sin(8x) + \frac{1}{8} \sin(2x) + \frac{1}{24} \sin(6x) + \frac{1}{16} \sin(4x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int cos 2x . cos 4x . cos 6x dx

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

int cos 4x. cos 2x dx

Evaluate int x cos x dx.

Evaluate int x^(2) cos x dx

Evaluate int sin x cosx * cos 2x * cos 4x dx

Evaluate : int (cos x + x sin x)/( x (x + cos x)) dx

Evaluate : int " sin 5x . cos x dx "

Evaluate : int e^(x) cos^(2) x (cos x-3 sin x ) dx

evaluate int( sin x + cos x )^ 2 dx