Home
Class 12
MATHS
Evaluate int sin x cosx * cos 2x * cos ...

Evaluate `int sin x cosx * cos 2x * cos 4x dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \sin x \cos x \cos 2x \cos 4x \, dx \), we can follow these steps: ### Step 1: Rewrite the integral We start by rewriting the integral and factoring out constants: \[ \int \sin x \cos x \cos 2x \cos 4x \, dx = \frac{1}{2} \int 2 \sin x \cos x \cos 2x \cos 4x \, dx \] **Hint:** Remember that \( \sin x \cos x = \frac{1}{2} \sin 2x \). ### Step 2: Use the identity for \( \sin 2x \) Using the identity \( \sin 2x = 2 \sin x \cos x \), we can rewrite the integral: \[ = \frac{1}{2} \int \sin 2x \cos 2x \cos 4x \, dx \] ### Step 3: Rewrite \( \sin 2x \cos 2x \) Now, we can use the identity \( \sin 2x \cos 2x = \frac{1}{2} \sin 4x \): \[ = \frac{1}{2} \int \frac{1}{2} \sin 4x \cos 4x \, dx = \frac{1}{4} \int \sin 4x \cos 4x \, dx \] ### Step 4: Use the identity for \( \sin 4x \cos 4x \) Again, we apply the identity \( \sin 4x \cos 4x = \frac{1}{2} \sin 8x \): \[ = \frac{1}{4} \int \frac{1}{2} \sin 8x \, dx = \frac{1}{8} \int \sin 8x \, dx \] ### Step 5: Integrate \( \sin 8x \) The integral of \( \sin 8x \) is: \[ \int \sin 8x \, dx = -\frac{1}{8} \cos 8x + C \] Thus, \[ = \frac{1}{8} \left(-\frac{1}{8} \cos 8x + C\right) = -\frac{1}{64} \cos 8x + \frac{C}{8} \] ### Final Result Therefore, the final answer is: \[ \int \sin x \cos x \cos 2x \cos 4x \, dx = -\frac{1}{64} \cos 8x + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int sin x cos x cos2x cos 4x cos 8x dx

int sin x cos(cos x)dx

evaluate int( sin x + cos x )^ 2 dx

int cos 4x. cos 2x dx

Evaluate the following integrals. int sin x cos x (sin 2x + cos 2x) dx

Evaluate: int1/(sin^2x cos^2x)\ dx

Evaluate the following integrals Evaluate int (3 sin x+2 cos x)/(3 cos x + 2 sin x)dx

Evaluate: int(sin x)/(cos x(1+cos x))dx

Evaluate: int1/(sin^4x+sin^2xcos^2x+cos^4x)\ dx

Evaluate : int e^(x) cos^(2) x (cos x-3 sin x ) dx