Home
Class 12
MATHS
int (1-tan^2x)/(1+tan^2x) dx...

`int (1-tan^2x)/(1+tan^2x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{1 - \tan^2 x}{1 + \tan^2 x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We start with the expression: \[ \frac{1 - \tan^2 x}{1 + \tan^2 x} \] Using the identity \( \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \) and \( 1 + \tan^2 x = \sec^2 x \), we can rewrite the integrand: \[ \frac{1 - \tan^2 x}{1 + \tan^2 x} = \frac{1 - \tan^2 x}{\sec^2 x} \] Since \( \sec^2 x = \frac{1}{\cos^2 x} \), we can express this as: \[ \frac{1 - \tan^2 x}{\sec^2 x} = (1 - \tan^2 x) \cos^2 x \] ### Step 2: Rewrite the expression Now, we can rewrite the integrand: \[ (1 - \tan^2 x) \cos^2 x = \cos^2 x - \tan^2 x \cos^2 x \] Since \( \tan^2 x = \frac{\sin^2 x}{\cos^2 x} \), we have: \[ \tan^2 x \cos^2 x = \sin^2 x \] Thus, the integrand becomes: \[ \cos^2 x - \sin^2 x \] ### Step 3: Use the double angle identity We know that: \[ \cos^2 x - \sin^2 x = \cos 2x \] So we can rewrite the integral as: \[ \int (\cos^2 x - \sin^2 x) \, dx = \int \cos 2x \, dx \] ### Step 4: Integrate The integral of \( \cos 2x \) is: \[ \int \cos 2x \, dx = \frac{1}{2} \sin 2x + C \] ### Step 5: Final expression Thus, we can express the final answer as: \[ \frac{1}{2} \sin 2x + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(tanxsec^2x)/(1-tan^2x)dx

Find dy/dx , if y = (1 - tan^2x)/(1 + tan^2x) .

intcos^-1((1-tan^2x)/(1+tan^2x))dx

Evaluate: int(tan^2xsec^2x)/(1+tan^6x)dx

Evaluate: int(sec^2x)/(1-tan^2x)\ dx

Evaluate: int(sec^2x)/(1-tan^2x)dx

The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is:

Evaluate: inte^x(1+tanx+tan^2x)dx

Evaluate: inte^x(1+tanx+tan^2x)dx

Evaluate: int(tan^-1x)^2/(1+x^2)dx