Home
Class 12
MATHS
int[(cot^2 2x-1)/(2cot2x)-cos8xcot4x]dx...

`int[(cot^2 2x-1)/(2cot2x)-cos8xcot4x]dx`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int \frac{\cot^2(2x) - 1}{2 \cot(2x) - \cos(8x) \cot(4x)} \, dx \), we can follow these steps: ### Step 1: Rewrite the integrand We start with the expression: \[ \frac{\cot^2(2x) - 1}{2 \cot(2x) - \cos(8x) \cot(4x)} \] Recall that \( \cot^2(\theta) - 1 = \csc^2(\theta) - 1 = \frac{\sin^2(\theta)}{\cos^2(\theta)} - 1 = \frac{\cos^2(\theta) - \sin^2(\theta)}{\sin^2(\theta)} \). Thus, we can rewrite: \[ \cot^2(2x) - 1 = \frac{\cos^2(2x) - \sin^2(2x)}{\sin^2(2x)} = \frac{\cos(4x)}{\sin^2(2x)} \] ### Step 2: Substitute in the integral Now substituting this back into the integral gives: \[ \int \frac{\frac{\cos(4x)}{\sin^2(2x)}}{2 \cot(2x) - \cos(8x) \cot(4x)} \, dx \] ### Step 3: Simplify the denominator Next, we rewrite \( \cot(2x) \) and \( \cot(4x) \): \[ \cot(2x) = \frac{\cos(2x)}{\sin(2x)}, \quad \cot(4x) = \frac{\cos(4x)}{\sin(4x)} \] So the denominator becomes: \[ 2 \cdot \frac{\cos(2x)}{\sin(2x)} - \cos(8x) \cdot \frac{\cos(4x)}{\sin(4x)} \] ### Step 4: Combine the terms Now we can find a common denominator for the terms in the denominator: \[ \frac{2 \cos(2x) \sin(4x) - \cos(8x) \cos(4x) \sin(2x)}{\sin(2x) \sin(4x)} \] ### Step 5: Substitute back into the integral Substituting this back into the integral gives: \[ \int \frac{\cos(4x)}{\sin^2(2x)} \cdot \frac{\sin(2x) \sin(4x)}{2 \cos(2x) \sin(4x) - \cos(8x) \cos(4x) \sin(2x)} \, dx \] ### Step 6: Simplify the integral This simplifies to: \[ \int \frac{\cos(4x) \sin(2x)}{2 \cos(2x) \sin(4x) - \cos(8x) \cos(4x) \sin(2x)} \, dx \] ### Step 7: Use trigonometric identities Using the identity \( 1 - \cos(2\theta) = 2\sin^2(\theta) \), we can simplify further: \[ \int \cot(4x) (1 - \cos(8x)) \, dx \] ### Step 8: Final integration This can be rewritten as: \[ \int \cot(4x) \cdot 2 \sin^2(4x) \, dx \] Now we can integrate: \[ \int \frac{\cos(4x)}{\sin(4x)} \cdot 2 \sin^2(4x) \, dx \] This leads us to: \[ \int 2 \sin(4x) \cos(4x) \, dx = \int \sin(8x) \, dx \] ### Step 9: Solve the integral The integral of \( \sin(8x) \) is: \[ -\frac{1}{8} \cos(8x) + C \] ### Final Answer Thus, the final result of the integral is: \[ -\frac{1}{8} \cos(8x) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int cot^2 x dx

int(cos8x-1)/(tan2x-cot2x)dx

int(1+cos 2x)/(1-cos 2x)dx

int(cot^2 2x+tan^2 3x)dx

int cot^-1 x dx

cotxcot2x-cot2xcot3x-cot3xcotx=1

int(cotx+cot^3x)/(1+cot^3x)dx

int\ cot^(-1)x\ dx

int(cos 4x-1)/(cot x-tanx)dx is equal to

If int_(0)^(pi//2) (cot x)/(cot x+cosecx)dx=m(pi+n) , then m*n is equal to :