Home
Class 12
MATHS
Evaluate int(2 sin2x-cos x)/(6-cos^ (2)...

Evaluate `int(2 sin2x-cos x)/(6-cos^ (2)x-4sinx) dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \[ I = \int \frac{2 \sin 2x - \cos x}{6 - \cos^2 x - 4 \sin x} \, dx, \] we will follow these steps: ### Step 1: Rewrite the integral using trigonometric identities We know that \(\sin 2x = 2 \sin x \cos x\) and \(\cos^2 x = 1 - \sin^2 x\). Thus, we can rewrite the integral as: \[ I = \int \frac{2(2 \sin x \cos x) - \cos x}{6 - (1 - \sin^2 x) - 4 \sin x} \, dx. \] ### Step 2: Simplify the expression Substituting the identities into the integral gives: \[ I = \int \frac{4 \sin x \cos x - \cos x}{6 - 1 + \sin^2 x - 4 \sin x} \, dx, \] which simplifies to: \[ I = \int \frac{\cos x (4 \sin x - 1)}{\sin^2 x - 4 \sin x + 5} \, dx. \] ### Step 3: Factor the denominator The denominator \(\sin^2 x - 4 \sin x + 5\) can be rewritten as: \[ \sin^2 x - 4 \sin x + 4 + 1 = (\sin x - 2)^2 + 1. \] Thus, we have: \[ I = \int \frac{\cos x (4 \sin x - 1)}{(\sin x - 2)^2 + 1} \, dx. \] ### Step 4: Use substitution Let \(t = \sin x - 2\). Then, \(dt = \cos x \, dx\). The integral becomes: \[ I = \int \frac{4(t + 2) - 1}{t^2 + 1} \, dt = \int \frac{4t + 8 - 1}{t^2 + 1} \, dt = \int \frac{4t + 7}{t^2 + 1} \, dt. \] ### Step 5: Separate the integral We can separate the integral into two parts: \[ I = \int \frac{4t}{t^2 + 1} \, dt + \int \frac{7}{t^2 + 1} \, dt. \] ### Step 6: Evaluate the integrals 1. For the first integral, use the substitution \(u = t^2 + 1\), \(du = 2t \, dt\): \[ \int \frac{4t}{t^2 + 1} \, dt = 2 \ln |t^2 + 1| + C_1. \] 2. For the second integral: \[ \int \frac{7}{t^2 + 1} \, dt = 7 \tan^{-1}(t) + C_2. \] ### Step 7: Combine the results Thus, we have: \[ I = 2 \ln |t^2 + 1| + 7 \tan^{-1}(t) + C. \] ### Step 8: Substitute back for \(t\) Recall that \(t = \sin x - 2\): \[ I = 2 \ln |(\sin x - 2)^2 + 1| + 7 \tan^{-1}(\sin x - 2) + C. \] ### Final Answer The evaluated integral is: \[ I = 2 \ln |(\sin x - 2)^2 + 1| + 7 \tan^{-1}(\sin x - 2) + C. \] ---
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int((3sinx-2)cosx)/(5-cos^2x-4sinx)\ dx

Evaluate: int((3sinx-2)cosx)/(5-cos^2x-4sinx)\ dx

Evaluate int e^(x) ((1+sinx cos x)/(cos^(2)x))dx

Evaluate: int(sinx)/(cos2x)\ dx

int(sin2x)/(cos x)*dx

Evaluate: int(cos2x+2\ sin^2x)/(cos^2x)\ dx

Evaluate : inte^(x).((2+sin2x))/(cos^(2)x)dx

Evaluate : inte^xdot(2+sin2x)/(2cos^2x)\ dx

int(sin2x)/(cos2x)dx

Evaluate: int_0^(pi//2)(cos^2x)/(cos^2x+4sin^2x)dx