Home
Class 12
MATHS
Evaluate int x sqrt((a^(2)-x^(2))/(a^(2...

Evaluate `int x sqrt((a^(2)-x^(2))/(a^(2)+x^(2)))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} \, dx \), we will use a trigonometric substitution. Let's proceed step by step. ### Step 1: Substitution Let \( x^2 = a^2 \cos(2\theta) \). Then, differentiating both sides with respect to \( x \): \[ 2x \, dx = -a^2 \sin(2\theta) \, d\theta \] This gives us: \[ x \, dx = -\frac{a^2}{2} \sin(2\theta) \, d\theta \] ### Step 2: Rewrite the Integral Now, substituting \( x^2 = a^2 \cos(2\theta) \) into the integral: \[ \sqrt{a^2 - x^2} = \sqrt{a^2 - a^2 \cos(2\theta)} = \sqrt{a^2(1 - \cos(2\theta))} = a \sqrt{2 \sin^2(\theta)} = a \sqrt{2} \sin(\theta) \] And, \[ \sqrt{a^2 + x^2} = \sqrt{a^2 + a^2 \cos(2\theta)} = \sqrt{a^2(1 + \cos(2\theta))} = a \sqrt{2 \cos^2(\theta)} = a \sqrt{2} \cos(\theta) \] ### Step 3: Substitute into the Integral Substituting everything into the integral: \[ \int x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} \, dx = \int -\frac{a^2}{2} \sin(2\theta) \cdot \frac{a \sqrt{2} \sin(\theta)}{a \sqrt{2} \cos(\theta)} \, d\theta \] This simplifies to: \[ -\frac{a^3}{2} \int \sin(2\theta) \tan(\theta) \, d\theta \] ### Step 4: Simplifying the Integral Using the identity \( \sin(2\theta) = 2 \sin(\theta) \cos(\theta) \), we can rewrite the integral: \[ -\frac{a^3}{2} \int 2 \sin(\theta) \cos(\theta) \tan(\theta) \, d\theta = -a^3 \int \sin^2(\theta) \, d\theta \] ### Step 5: Integrate The integral of \( \sin^2(\theta) \) can be evaluated using the identity \( \sin^2(\theta) = \frac{1 - \cos(2\theta)}{2} \): \[ -a^3 \int \sin^2(\theta) \, d\theta = -a^3 \left( \frac{1}{2} \theta - \frac{1}{4} \sin(2\theta) \right) + C \] ### Step 6: Back Substitution Now we need to substitute back for \( \theta \): From \( x^2 = a^2 \cos(2\theta) \), we have \( \cos(2\theta) = \frac{x^2}{a^2} \) and hence \( \theta = \frac{1}{2} \cos^{-1}\left(\frac{x^2}{a^2}\right) \). Also, \( \sin(2\theta) = 1 - \cos^2(2\theta) = 1 - \frac{x^4}{a^4} \). ### Final Result Putting everything together, we get: \[ \int x \sqrt{\frac{a^2 - x^2}{a^2 + x^2}} \, dx = -\frac{a^3}{4} \cos^{-1}\left(\frac{x^2}{a^2}\right) + \frac{a^3}{8} \left(1 - \frac{x^4}{a^4}\right) + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int sqrt(x^(2)+2x+5)dx

Evaluate: int1/(sqrt(a^2-b^2x^2))dx

Evaluate: int(dx)/(sqrt(2a x-x^2))

Evaluate: int1/(x^3sqrt(x^2-a^2))dx

Evaluate : int(x^2)/(sqrt(1-x^2))dx

(2) int x sqrt(3-2x-x^(2))dx

Evaluate int(dx)/(sqrt(x^(2)+2x+2)) .

Evaluate: int1/(x\ sqrt(a x-x^2))\ dx

Evaluate int (x-1)/sqrt(x^2-x) dx

Evaluate int_0^sqrt(2)sqrt(2-x^2)dx