Home
Class 12
MATHS
Evaluate int (x^(2)+x+3)/(x^(2)-x-2)dx....

Evaluate `int (x^(2)+x+3)/(x^(2)-x-2)dx`.

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{x^2 + x + 3}{x^2 - x - 2} \, dx \), we will follow these steps: ### Step 1: Simplify the integrand We can rewrite the integrand by separating the numerator into parts that resemble the denominator. The denominator is \( x^2 - x - 2 \). We can express the numerator \( x^2 + x + 3 \) as: \[ x^2 + x + 3 = (x^2 - x - 2) + (2x + 5) \] Thus, we can rewrite the integral as: \[ \int \frac{(x^2 - x - 2) + (2x + 5)}{x^2 - x - 2} \, dx \] This separates into two integrals: \[ \int 1 \, dx + \int \frac{2x + 5}{x^2 - x - 2} \, dx \] ### Step 2: Evaluate the first integral The first integral is straightforward: \[ \int 1 \, dx = x \] ### Step 3: Evaluate the second integral Now we focus on the second integral \( \int \frac{2x + 5}{x^2 - x - 2} \, dx \). We can use substitution for this integral. Let \( u = x^2 - x - 2 \). Then, differentiating gives: \[ du = (2x - 1) \, dx \quad \Rightarrow \quad dx = \frac{du}{2x - 1} \] We can express \( 2x + 5 \) in terms of \( u \): \[ 2x + 5 = 2x + 5 = 2x - 1 + 6 \] Thus, the integral becomes: \[ \int \frac{2x - 1 + 6}{u} \cdot \frac{du}{2x - 1} = \int \frac{du}{u} + 6 \int \frac{du}{(2x - 1)u} \] ### Step 4: Solve the integrals The first part \( \int \frac{du}{u} \) gives: \[ \ln |u| = \ln |x^2 - x - 2| \] For the second part, we need to express \( 2x - 1 \) in terms of \( u \). We can rewrite: \[ \int \frac{6}{u} \, du = 6 \ln |u| = 6 \ln |x^2 - x - 2| \] ### Step 5: Combine results Combining everything, we have: \[ \int \frac{x^2 + x + 3}{x^2 - x - 2} \, dx = x + \ln |x^2 - x - 2| + 6 \ln |x^2 - x - 2| + C \] This simplifies to: \[ x + 7 \ln |x^2 - x - 2| + C \] ### Final Answer Thus, the final result is: \[ \int \frac{x^2 + x + 3}{x^2 - x - 2} \, dx = x + 7 \ln |x^2 - x - 2| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate int(x^3)/(x-2)dx

Evaluate: int(x^2+x+1)/(x^2-x)dx

Evaluate: int(x^2+5x+3)/(x^2+3x+2)\ dx

Evaluate : int(2x+7)/(x^(2)-x-2)dx

evaluate int (x^2+3 x−2)/ (√x) dx

Evaluate: int(x^3+x^2)\ dx

Evaluate: int(2x^2+7x-3)/(x^2(2x+1))\ dx

Evaluate: int2^(x)3^(x)dx

Evaluate: int(x^3+x^2+2x+1)/(x^2-x+1)dx

Evaluate int_(1)^(3)(x^(2)-2x)dx