Home
Class 12
MATHS
Evaluate int (sin x)/(sin 3x) dx...

Evaluate `int (sin x)/(sin 3x) dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{\sin x}{\sin 3x} \, dx \), we can follow these steps: ### Step 1: Rewrite \( \sin 3x \) Using the triple angle formula for sine, we have: \[ \sin 3x = 3 \sin x - 4 \sin^3 x \] Thus, we can rewrite the integral as: \[ \int \frac{\sin x}{3 \sin x - 4 \sin^3 x} \, dx \] ### Step 2: Factor out \( \sin x \) We can factor \( \sin x \) from the denominator: \[ \int \frac{\sin x}{\sin x (3 - 4 \sin^2 x)} \, dx = \int \frac{1}{3 - 4 \sin^2 x} \, dx \] ### Step 3: Use a substitution Let \( t = \tan x \). Then, we know: \[ \sin^2 x = \frac{t^2}{1+t^2} \quad \text{and} \quad dx = \frac{dt}{1+t^2} \] Substituting these into the integral gives: \[ \int \frac{1}{3 - 4 \frac{t^2}{1+t^2}} \cdot \frac{dt}{1+t^2} \] ### Step 4: Simplify the integral This simplifies to: \[ \int \frac{1+t^2}{3(1+t^2) - 4t^2} \, dt = \int \frac{1+t^2}{3 - t^2} \, dt \] ### Step 5: Split the integral We can split the integral into two parts: \[ \int \frac{1}{3 - t^2} \, dt + \int \frac{t^2}{3 - t^2} \, dt \] ### Step 6: Solve the first integral The first integral can be solved using the formula for the integral of a rational function: \[ \int \frac{1}{a^2 - x^2} \, dx = \frac{1}{2a} \ln \left| \frac{a+x}{a-x} \right| + C \] For \( a = \sqrt{3} \): \[ \int \frac{1}{3 - t^2} \, dt = \frac{1}{2\sqrt{3}} \ln \left| \frac{\sqrt{3}+t}{\sqrt{3}-t} \right| + C \] ### Step 7: Solve the second integral For the second integral, we can rewrite it as: \[ \int \frac{t^2}{3 - t^2} \, dt = \int \left( \frac{3 - (3 - t^2)}{3 - t^2} \right) dt = \int 1 \, dt - \int \frac{3}{3 - t^2} \, dt \] The first part integrates to \( t \), and the second part can be solved similarly as above. ### Step 8: Combine the results Combining both integrals gives us the final result in terms of \( t = \tan x \). ### Final Answer Thus, the evaluated integral is: \[ \int \frac{\sin x}{\sin 3x} \, dx = \frac{1}{2\sqrt{3}} \ln \left| \frac{\sqrt{3} + \tan x}{\sqrt{3} - \tan x} \right| + C + \tan x - 3 \int \frac{1}{3 - t^2} \, dt \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int(sinx)/(sin(x-a))\ dx

Evaluate: int(sinx)/(sin(x-a))\ dx

Evaluate: int(sin(x-a))/(sinx)\ dx

Evaluate: int(sinx)/(sin(x-a))\ dx

Evaluate: int(sin4x)/(sinx)\ dx

Evaluate: int(sin2x)/(sin5xsin3x)dx

Evaluate: (i) int(sin4x)/(sin2x)\ dx (ii) int(sin4x)/(cos2x)\ dx

Evaluate int (sin 2x)/((1+sin x)(2+sin x))dx

Evaluate: int(sinx)/(sin4x)dx

Evaluate: int(sinx)/(sin4x)dx