Home
Class 12
MATHS
Evaluate: int1/(2+sinx+cosx)\ dx...

Evaluate: `int1/(2+sinx+cosx)\ dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( \int \frac{1}{2 + \sin x + \cos x} \, dx \), we can follow these steps: ### Step 1: Rewrite \( \sin x \) and \( \cos x \) in terms of \( \tan \frac{x}{2} \) Using the identities: \[ \sin x = \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \quad \text{and} \quad \cos x = \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} \] we can substitute these into the integral. ### Step 2: Substitute into the integral Substituting \( \sin x \) and \( \cos x \) gives: \[ \int \frac{1}{2 + \frac{2 \tan \frac{x}{2}}{1 + \tan^2 \frac{x}{2}} + \frac{1 - \tan^2 \frac{x}{2}}{1 + \tan^2 \frac{x}{2}}} \, dx \] Combining the terms in the denominator: \[ = \int \frac{1 + \tan^2 \frac{x}{2}}{(2 + 2 \tan \frac{x}{2} + 1 - \tan^2 \frac{x}{2})} \, dx \] This simplifies to: \[ = \int \frac{1 + \tan^2 \frac{x}{2}}{(3 + 2 \tan \frac{x}{2} + \tan^2 \frac{x}{2})} \, dx \] ### Step 3: Let \( t = \tan \frac{x}{2} \) Now, let \( t = \tan \frac{x}{2} \). Then, we have: \[ dx = \frac{2}{1 + t^2} \, dt \] ### Step 4: Substitute \( dx \) in the integral Substituting \( dx \) into the integral gives: \[ \int \frac{2}{(1 + t^2)(3 + 2t + t^2)} \, dt \] ### Step 5: Simplify the integral Now, we can rewrite the denominator: \[ 3 + 2t + t^2 = (t + 1)^2 + 2 \] Thus, the integral becomes: \[ \int \frac{2}{(1 + t^2)((t + 1)^2 + 2)} \, dt \] ### Step 6: Use partial fraction decomposition We can use partial fraction decomposition to split the integrand: \[ \frac{2}{(1 + t^2)((t + 1)^2 + 2)} = \frac{A}{1 + t^2} + \frac{Bt + C}{(t + 1)^2 + 2} \] Solving for \( A, B, C \) will yield values that can be integrated separately. ### Step 7: Integrate each term After finding \( A, B, C \), integrate each term: 1. The integral of \( \frac{A}{1 + t^2} \) gives \( A \tan^{-1}(t) \). 2. The integral of \( \frac{Bt + C}{(t + 1)^2 + 2} \) can be solved using substitution. ### Step 8: Substitute back for \( t \) Finally, substitute back \( t = \tan \frac{x}{2} \) to express the result in terms of \( x \). ### Final Result The integral evaluates to: \[ \text{Result} = \text{Expression in terms of } x + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: int1/(3+2sinx+cosx)\ dx

Evaluate: int1/(3+2sinx+cosx)\ dx

Evaluate: int1/(sinx(2+3cosx)\ dx

Evaluate: int1/(sinx(3+2cosx)\ dx

Evaluate: int1/(1+sinx+cosx)\ dx

Evaluate: int1/(1-sinx+cosx)\ dx

Evaluate: int1/(sinx+cosx)\ dx

Evaluate: int( 2sinx + 3cosx) dx

Evaluate: int1/(1+sinx+cosx)dx

Evaluate: int1/((2sinx+3cosx)^2)\ dx