Home
Class 12
MATHS
The value of int {1+tan x*tan (x + A)}\ ...

The value of `int {1+tan x*tan (x + A)}\ dx` is

A

`cot A * log |(sec x)/(sec(x+A))|+C`

B

`tan A * log |sec(x+A)|+C`

C

`cotA*log|(sec(x+A))/(sec(x))|+C`

D

None of these

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( \int (1 + \tan x \tan(x + A)) \, dx \), we will follow these steps: ### Step 1: Use the trigonometric identity We know that: \[ \tan(x + A) = \frac{\tan x + \tan A}{1 - \tan x \tan A} \] Thus, we can rewrite \( \tan x \tan(x + A) \): \[ \tan x \tan(x + A) = \tan x \cdot \frac{\tan x + \tan A}{1 - \tan x \tan A} \] ### Step 2: Simplify the expression Now, we can express the integrand: \[ 1 + \tan x \tan(x + A) = 1 + \frac{\tan^2 x + \tan x \tan A}{1 - \tan x \tan A} \] This simplifies to: \[ \frac{(1 - \tan x \tan A) + (\tan^2 x + \tan x \tan A)}{1 - \tan x \tan A} = \frac{1 + \tan^2 x}{1 - \tan x \tan A} \] ### Step 3: Use the identity \( 1 + \tan^2 x = \sec^2 x \) Thus, we have: \[ 1 + \tan x \tan(x + A) = \frac{\sec^2 x}{1 - \tan x \tan A} \] ### Step 4: Rewrite the integral Now we can rewrite the integral: \[ \int (1 + \tan x \tan(x + A)) \, dx = \int \frac{\sec^2 x}{1 - \tan x \tan A} \, dx \] ### Step 5: Use substitution Let \( u = \tan x \), then \( du = \sec^2 x \, dx \). The integral becomes: \[ \int \frac{1}{1 - u \tan A} \, du \] ### Step 6: Integrate using the formula for arctangent The integral \( \int \frac{1}{1 - au} \, du = -\frac{1}{a} \ln |1 - au| + C \) gives us: \[ -\frac{1}{\tan A} \ln |1 - \tan x \tan A| + C \] ### Step 7: Final expression Thus, the final value of the integral is: \[ -\frac{1}{\tan A} \ln |1 - \tan x \tan A| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

The value of int (tan x )/(tan ^(2) x + tan x+1)dx =x -(2)/(sqrtA) tan ^(-1) ((2 tan x+1)/(sqrtA))+C Then the value of A is:

Evaluate int tan x tan(x+1)dx .

int {1+2 tan x (tan x + sec x )}^(1//2) dx=?

Evaluate : int tan x tan 2 x tan 3x dx

Evaluate int tan^(3)x dx

int tan^(3)x*dx

int (1 + tan x )/ (x + log sec x)dx

Evaluate int\tan^2x\dx

Evaluate int tan^(-1) x dx

int (1-tan^2x)/(1+tan^2x) dx