Home
Class 12
MATHS
Integrate : int (sqrt( cos 2x))/(sin x...

Integrate :
`int (sqrt( cos 2x))/(sin x)dx`

A

`log|cot x+ sqrt(cot^(2)x-1)|+sqrt(2)log|cos x +sqrt(cos^(2)x-1//2)|+C`

B

`- log|cot x+ sqrt(cot^(2)x-1)|+sqrt(2)log|cos x +sqrt(cos^(2)x-1//2)|+C`

C

`log|cot x+sqrt(cot^(2)x-1)|+2log|cos x + sqrt(cos^(2)x-1//2)|+C`

D

`- log|cot x+sqrt(cot^(2)x-1)|+2log|cos x + sqrt(cos^(2)x-1//2)|+C`

Text Solution

AI Generated Solution

The correct Answer is:
To solve the integral \( I = \int \frac{\sqrt{\cos 2x}}{\sin x} \, dx \), we can follow these steps: ### Step 1: Multiply and Divide by \( \cos 2x \) We start by rewriting the integral: \[ I = \int \frac{\sqrt{\cos 2x}}{\sin x} \, dx = \int \frac{\cos 2x}{\sin x \sqrt{\cos 2x}} \cdot \frac{1}{\cos 2x} \, dx \] ### Step 2: Substitute \( \cos 2x \) Using the identity \( \cos 2x = 1 - 2\sin^2 x \), we substitute: \[ I = \int \frac{1 - 2\sin^2 x}{\sin x \sqrt{1 - 2\sin^2 x}} \, dx \] ### Step 3: Separate the Integral We can separate the integral into two parts: \[ I = \int \frac{1}{\sin x \sqrt{\cos 2x}} \, dx - 2 \int \frac{\sin^2 x}{\sin x \sqrt{\cos 2x}} \, dx \] This simplifies to: \[ I = \int \frac{1}{\sin x \sqrt{\cos 2x}} \, dx - 2 \int \frac{\sin x}{\sqrt{\cos 2x}} \, dx \] ### Step 4: Solve the First Integral Let \( I_1 = \int \frac{1}{\sin x \sqrt{\cos 2x}} \, dx \). We can express \( \cos 2x \) as \( \cos^2 x - \sin^2 x \): \[ I_1 = \int \frac{dx}{\sin x \sqrt{\cos^2 x - \sin^2 x}} \] ### Step 5: Solve the Second Integral Let \( I_2 = 2 \int \frac{\sin x}{\sqrt{\cos 2x}} \, dx \). We can use the substitution \( u = \cos x \), which gives \( du = -\sin x \, dx \): \[ I_2 = -2 \int \frac{du}{\sqrt{2u - 1}} \] ### Step 6: Integrate The integral \( I_2 \) can be solved using the formula for integrals of the form \( \int \frac{du}{\sqrt{a - u}} \): \[ I_2 = -2 \cdot \sqrt{2} \ln |u + \sqrt{2u - 1}| + C \] ### Step 7: Combine Results Now, we combine the results of \( I_1 \) and \( I_2 \): \[ I = I_1 - I_2 = \int \frac{1}{\sin x \sqrt{\cos 2x}} \, dx + 2\sqrt{2} \ln |\cos x + \sqrt{2\cos x - 1}| + C \] ### Final Result Thus, the final answer is: \[ I = \int \frac{1}{\sin x \sqrt{\cos 2x}} \, dx + 2\sqrt{2} \ln |\cos x + \sqrt{2\cos x - 1}| + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

int(sqrt(tan x))/(sin x cos x)dx=

Evaluate the following Integrals : int (cos x)/((1+sin x)(2+sin x))dx

Evaluate the following Integrals. int (cos x)/(1+sin x) dx

Solve the following integration int (sin x+cos x)/(sqrt(1+sin 2x))*dx , here (sin x + cos x) gt 0

Evaluate the following integral: int_0^(pi//2)(cos^2x)/(1+3sin^2x)dx

Evaluate the following integral: int_0^(pi//2)(cos x)/(1+sin^2x)dx

Evaluate the following integral: int_0^(pi//2)(cos x)/(1+sin^2x)dx

Evaluate the following integrals. int sin x sqrt( 1 - cos 2x)dx

Evaluate the following integration int (sin 4x)/(sin x)dx

Integrate the functions sqrt(sin2x)cos2x