Home
Class 12
MATHS
Evaluate int e^(2x) ((1+ sin 2x)/(1+cos ...

Evaluate `int e^(2x) ((1+ sin 2x)/(1+cos 2x))dx`

Text Solution

AI Generated Solution

The correct Answer is:
To evaluate the integral \( I = \int e^{2x} \frac{1 + \sin 2x}{1 + \cos 2x} \, dx \), we can follow these steps: ### Step 1: Simplify the integrand We can rewrite the integrand: \[ \frac{1 + \sin 2x}{1 + \cos 2x} = \frac{1 + 2 \sin x \cos x}{1 + 2 \cos^2 x - 1} = \frac{1 + 2 \sin x \cos x}{2 \cos^2 x} \] This simplifies to: \[ \frac{1}{2 \cos^2 x} + \frac{\sin 2x}{2 \cos^2 x} = \frac{1}{2} \sec^2 x + \tan x \] Thus, we can rewrite the integral as: \[ I = \int e^{2x} \left( \frac{1}{2} \sec^2 x + \tan x \right) \, dx \] ### Step 2: Separate the integral Now we can separate the integral: \[ I = \frac{1}{2} \int e^{2x} \sec^2 x \, dx + \int e^{2x} \tan x \, dx \] ### Step 3: Evaluate the first integral using integration by parts Let’s evaluate \( \int e^{2x} \sec^2 x \, dx \) using integration by parts. Let: - \( u = \tan x \) (first function) - \( dv = e^{2x} \, dx \) (second function) Then, we have: - \( du = \sec^2 x \, dx \) - \( v = \frac{1}{2} e^{2x} \) Now applying integration by parts: \[ \int u \, dv = uv - \int v \, du \] Thus, \[ \int e^{2x} \sec^2 x \, dx = \tan x \cdot \frac{1}{2} e^{2x} - \int \frac{1}{2} e^{2x} \sec^2 x \, dx \] ### Step 4: Solve for the integral Let \( J = \int e^{2x} \sec^2 x \, dx \). Then we have: \[ J = \frac{1}{2} e^{2x} \tan x - \frac{1}{2} J \] Adding \( \frac{1}{2} J \) to both sides: \[ \frac{3}{2} J = \frac{1}{2} e^{2x} \tan x \] Thus, \[ J = \frac{1}{3} e^{2x} \tan x \] ### Step 5: Evaluate the second integral Now we evaluate \( \int e^{2x} \tan x \, dx \) using integration by parts again: Let: - \( u = \tan x \) - \( dv = e^{2x} \, dx \) Then, \[ \int e^{2x} \tan x \, dx = \tan x \cdot \frac{1}{2} e^{2x} - \int \frac{1}{2} e^{2x} \sec^2 x \, dx \] We already know \( \int e^{2x} \sec^2 x \, dx = J \), so: \[ \int e^{2x} \tan x \, dx = \frac{1}{2} e^{2x} \tan x - \frac{1}{2} J \] ### Step 6: Combine results Now substituting back into our expression for \( I \): \[ I = \frac{1}{2} J + \left( \frac{1}{2} e^{2x} \tan x - \frac{1}{2} J \right) \] This simplifies to: \[ I = \frac{1}{2} e^{2x} \tan x \] ### Final Result Thus, the final result is: \[ I = \frac{1}{3} e^{2x} \tan x + C \]
Promotional Banner

Topper's Solved these Questions

  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 1|15 Videos
  • INDEFINITE INTEGRAL

    ARIHANT MATHS ENGLISH|Exercise Exercise For Session 2|15 Videos
  • HYPERBOLA

    ARIHANT MATHS ENGLISH|Exercise Hyperbola Exercise 11 : Questions Asked in Previous 13 Years Exams|3 Videos
  • INVERSE TRIGONOMETRIC FUNCTIONS

    ARIHANT MATHS ENGLISH|Exercise Exercise (Questions Asked In Previous 13 Years Exam)|8 Videos

Similar Questions

Explore conceptually related problems

Evaluate: inte^(2x)\ ((1+sin2x)/(1+cos2x))\ dx

Evaluate: inte^(2x)((1+sin2x)/(1+cos2x))dx

Evaluate: inte^(2x)((1+sin2x)/(1+cos2x))dx

Evaluate: int e^(x)((sin2x-2)/(1-cos2x))dx=

Evaluate int e^(2x) sin 3x dx .

Evaluate : int e^(-2x) sin x dx

Evaluate int e^(2x) sin 3x dx .

Evaluate: inte^x\ ((2+sin2x)/(1+cos2x))\ dx

Evaluate: inte^x\ ((1+sinxcosx)/(cos^2x))\ dx

I=int(sin^2x)/(1+cos x)dx